Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Nature ; 595(7869): 707-712, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098568

RESUMEN

Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , Estaciones del Año , COVID-19/diagnóstico , COVID-19/epidemiología , Europa (Continente)/epidemiología , Genotipo , Humanos , Filogenia , SARS-CoV-2/genética , Factores de Tiempo , Viaje/legislación & jurisprudencia , Viaje/estadística & datos numéricos
2.
Proc Natl Acad Sci U S A ; 121(2): e2308125121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175864

RESUMEN

We estimate the basic reproductive number and case counts for 15 distinct Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, distributed across 11 populations (10 countries and one cruise ship), based solely on phylodynamic analyses of genomic data. Our results indicate that, prior to significant public health interventions, the reproductive numbers for 10 (out of 15) of these outbreaks are similar, with median posterior estimates ranging between 1.4 and 2.8. These estimates provide a view which is complementary to that provided by those based on traditional line listing data. The genomic-based view is arguably less susceptible to biases resulting from differences in testing protocols, testing intensity, and import of cases into the community of interest. In the analyses reported here, the genomic data primarily provide information regarding which samples belong to a particular outbreak. We observe that once these outbreaks are identified, the sampling dates carry the majority of the information regarding the reproductive number. Finally, we provide genome-based estimates of the cumulative number of infections for each outbreak. For 7 out of 11 of the populations studied, the number of confirmed cases is much bigger than the cumulative number of infections estimated from the sequence data, a possible explanation being the presence of unsequenced outbreaks in these populations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Brotes de Enfermedades , Genómica , Navíos
3.
PLoS Pathog ; 20(5): e1011675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696531

RESUMEN

Persons living with HIV are known to be at increased risk of developing tuberculosis (TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has remained unclear how HIV co-infection affects subsequent Mtb transmission from these patients. Here, we customized a Bayesian phylodynamic framework to estimate the effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We applied our model to four Mtb genomic datasets collected in sub-Saharan African countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is a strong risk factor for developing active TB. Additionally, we demonstrate that HIV co-infection is associated with a reduced effective reproductive number for TB. Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that, in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than HIV infection status alone. Together, our genome-based analyses complement observational household contact studies, and more firmly establish the negative association between HIV co-infection and Mtb transmissibility.


Asunto(s)
Coinfección , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Humanos , África del Sur del Sahara/epidemiología , Infecciones por VIH/complicaciones , Infecciones por VIH/transmisión , Infecciones por VIH/epidemiología , Coinfección/microbiología , Coinfección/epidemiología , Tuberculosis/epidemiología , Tuberculosis/transmisión , Tuberculosis/microbiología , Masculino , Recuento de Linfocito CD4 , Femenino , Teorema de Bayes , Adulto , Factores de Riesgo
4.
Proc Natl Acad Sci U S A ; 120(17): e2215610120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068240

RESUMEN

In 2013 to 2017, avian influenza A(H7N9) virus has caused five severe epidemic waves of human infections in China. The role of live bird markets (LBMs) in the transmission dynamics of H7N9 remains unclear. Using a Bayesian phylodynamic approach, we shed light on past H7N9 transmission events at the human-LBM interface that were not directly observed using case surveillance data-based approaches. Our results reveal concurrent circulation of H7N9 lineages in Yangtze and Pearl River Delta regions, with evidence of local transmission during each wave. Our results indicate that H7N9 circulated in humans and LBMs for weeks to months before being first detected. Our findings support the seasonality of H7N9 transmission and suggest a high number of underreported infections, particularly in LBMs. We provide evidence for differences in virus transmissibility between low and highly pathogenic H7N9. We demonstrate a regional spatial structure for the spread of H7N9 among LBMs, highlighting the importance of further investigating the role of local live poultry trade in virus transmission. Our results provide estimates of avian influenza virus (AIV) transmission at the LBM level, providing a unique opportunity to better prepare surveillance plans at LBMs for response to future AIV epidemics.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Teorema de Bayes , Aves de Corral , China/epidemiología
5.
PLoS Pathog ; 19(4): e1010893, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014917

RESUMEN

In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC population in Dar es Salaam, Tanzania over a six-year period, using 1,082 unique patient-derived MTBC whole-genome sequences (WGS) and associated clinical data. We show that the TB epidemic in Dar es Salaam is dominated by multiple MTBC genotypes introduced to Tanzania from different parts of the world during the last 300 years. The most common MTBC genotypes deriving from these introductions exhibited differences in transmission rates and in the duration of the infectious period, but little differences in overall fitness, as measured by the effective reproductive number. Moreover, measures of disease severity and bacterial load indicated no differences in virulence between these genotypes during active TB. Instead, the combination of an early introduction and a high transmission rate accounted for the high prevalence of L3.1.1, the most dominant MTBC genotype in this setting. Yet, a longer co-existence with the host population did not always result in a higher transmission rate, suggesting that distinct life-history traits have evolved in the different MTBC genotypes. Taken together, our results point to bacterial factors as important determinants of the TB epidemic in Dar es Salaam.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Tanzanía/epidemiología , Tuberculosis/epidemiología , Genotipo , Virulencia
6.
PLoS Comput Biol ; 20(4): e1012021, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626217

RESUMEN

The time-varying effective reproduction number Rt is a widely used indicator of transmission dynamics during infectious disease outbreaks. Timely estimates of Rt can be obtained from reported cases counted by their date of symptom onset, which is generally closer to the time of infection than the date of report. Case counts by date of symptom onset are typically obtained from line list data, however these data can have missing information and are subject to right truncation. Previous methods have addressed these problems independently by first imputing missing onset dates, then adjusting truncated case counts, and finally estimating the effective reproduction number. This stepwise approach makes it difficult to propagate uncertainty and can introduce subtle biases during real-time estimation due to the continued impact of assumptions made in previous steps. In this work, we integrate imputation, truncation adjustment, and Rt estimation into a single generative Bayesian model, allowing direct joint inference of case counts and Rt from line list data with missing symptom onset dates. We then use this framework to compare the performance of nowcasting approaches with different stepwise and generative components on synthetic line list data for multiple outbreak scenarios and across different epidemic phases. We find that under reporting delays realistic for hospitalization data (50% of reports delayed by more than a week), intermediate smoothing, as is common practice in stepwise approaches, can bias nowcasts of case counts and Rt, which is avoided in a joint generative approach due to shared regularization of all model components. On incomplete line list data, a fully generative approach enables the quantification of uncertainty due to missing onset dates without the need for an initial multiple imputation step. In a real-world comparison using hospitalization line list data from the COVID-19 pandemic in Switzerland, we observe the same qualitative differences between approaches. The generative modeling components developed in this work have been integrated and further extended in the R package epinowcast, providing a flexible and interpretable tool for real-time surveillance.


Asunto(s)
Número Básico de Reproducción , Teorema de Bayes , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/transmisión , Número Básico de Reproducción/estadística & datos numéricos , Brotes de Enfermedades/estadística & datos numéricos , Biología Computacional/métodos , SARS-CoV-2 , Simulación por Computador
7.
Syst Biol ; 72(6): 1316-1336, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37605524

RESUMEN

Several total-evidence dating studies under the fossilized birth-death (FBD) model have produced very old age estimates, which are not supported by the fossil record. This phenomenon has been termed "deep root attraction (DRA)." For two specific data sets, involving divergence time estimation for the early radiations of ants, bees, and wasps (Hymenoptera) and of placental mammals (Eutheria), it has been shown that the DRA effect can be greatly reduced by accommodating the fact that extant species in these trees have been sampled to maximize diversity, so-called diversified sampling. Unfortunately, current methods to accommodate diversified sampling only consider the extreme case where it is possible to identify a cut-off time such that all splits occurring before this time are represented in the sampled tree but none of the younger splits. In reality, the sampling bias is rarely this extreme and may be difficult to model properly. Similar modeling challenges apply to the sampling of the fossil record. This raises the question of whether it is possible to find dating methods that are more robust to sampling biases. Here, we show that the skyline FBD (SFBD) process, where the diversification and fossil-sampling rates can vary over time in a piecewise fashion, provides age estimates that are more robust to inadequacies in the modeling of the sampling process and less sensitive to DRA effects. In the SFBD model we consider, rates in different time intervals are either considered to be independent and identically distributed or assumed to be autocorrelated following an Ornstein-Uhlenbeck (OU) process. Through simulations and reanalyses of Hymenoptera and Eutheria data, we show that both variants of the SFBD model unify age estimates under random and diversified sampling assumptions. The SFBD model can resolve DRA by absorbing the deviations from the sampling assumptions into the inferred dynamics of the diversification process over time. Although this means that the inferred diversification dynamics must be interpreted with caution, taking sampling biases into account, we conclude that the SFBD model represents the most robust approach currently available for addressing DRA in total-evidence dating.


Asunto(s)
Hormigas , Placenta , Femenino , Embarazo , Animales , Filogenia , Tiempo , Euterios , Fósiles
8.
PLoS Comput Biol ; 19(11): e1011653, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011276

RESUMEN

The effective reproductive number Rt has taken a central role in the scientific, political, and public discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely published. Disagreement between estimates can be substantial and may lead to confusion among decision-makers and the general public. In this work, we compare different estimates of the national-level effective reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between estimates from the same method but published at different time points (within-method agreement) as well as retrospective agreement across eight different approaches (between-method agreement). Concerning the former, estimates from some methods are very stable over time and hardly subject to revisions, while others display considerable fluctuations. To evaluate between-method agreement, we reproduce the estimates generated by different groups using a variety of statistical approaches, standardizing analytical choices to assess how they contribute to the observed disagreement. These analytical choices include the data source, data pre-processing, assumed generation time distribution, statistical tuning parameters, and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt may affect results at least as strongly as the selection of the statistical approach. They should thus be communicated transparently along with the estimates.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Número Básico de Reproducción , Pandemias , Estudios Retrospectivos , Alemania/epidemiología
9.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571105

RESUMEN

The investigation of migratory patterns during the SARS-CoV-2 pandemic before spring 2020 border closures in Europe is a crucial first step toward an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic and coinfer the geographic location of ancestral lineages as well as the number of migration events into and between European regions. We find that the predominant lineage spreading in Europe during this time has a most recent common ancestor in Italy and was probably seeded by a transmission event in either Hubei, China or Germany. We do not find evidence for preferential migration paths from Hubei into different European regions or from each European region to the others. Sustained local transmission is first evident in Italy and then shortly thereafter in the other European regions considered. Before the first border closures in Europe, we estimate that the rate of occurrence of new cases from within-country transmission was within the bounds of the estimated rate of new cases from migration. In summary, our analysis offers a view on the early state of the epidemic in Europe and on migration patterns of the virus before border closures. This information will enable further study of the necessity and timeliness of border closures.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Europa (Continente)/epidemiología , Genoma Viral , Humanos , Filogeografía , SARS-CoV-2/genética
10.
BMC Bioinformatics ; 24(1): 232, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277732

RESUMEN

BACKGROUND: Recent epidemic outbreaks such as the SARS-CoV-2 pandemic and the mpox outbreak in 2022 have demonstrated the value of genomic sequencing data for tracking the origin and spread of pathogens. Laboratories around the globe generated new sequences at unprecedented speed and volume and bioinformaticians developed new tools and dashboards to analyze this wealth of data. However, a major challenge that remains is the lack of simple and efficient approaches for accessing and processing sequencing data. RESULTS: The Lightweight API for Sequences (LAPIS) facilitates rapid retrieval and analysis of genomic sequencing data through a REST API. It supports complex mutation- and metadata-based queries and can perform aggregation operations on massive datasets. LAPIS is optimized for typical questions relevant to genomic epidemiology. Using a newly-developed in-memory database engine, it has a high speed and throughput: between 25 January and 4 February 2023, the SARS-CoV-2 instance of LAPIS, which contains 14.5 million sequences, processed over 20 million requests with a mean response time of 411 ms and a median response time of 1 ms. LAPIS is the core engine behind our dashboards on genspectrum.org and we currently maintain public LAPIS instances for SARS-CoV-2 and mpox. CONCLUSIONS: Powered by an optimized database engine and available through a web API, LAPIS enhances the accessibility of genomic sequencing data. It is designed to serve as a common backend for dashboards and analyses with the potential to be integrated into common database platforms such as GenBank.


Asunto(s)
COVID-19 , Mpox , Humanos , SARS-CoV-2/genética , Genoma , Genómica
11.
BMC Bioinformatics ; 24(1): 310, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568078

RESUMEN

BACKGROUND: Accurate estimation of the effective reproductive number ([Formula: see text]) of epidemic outbreaks is of central relevance to public health policy and decision making. We present estimateR, an R package for the estimation of the reproductive number through time from delayed observations of infection events. Such delayed observations include confirmed cases, hospitalizations or deaths. The package implements the methodology of Huisman et al. but modularizes the [Formula: see text] estimation procedure to allow easy implementation of new alternatives to the currently available methods. Users can tailor their analyses according to their particular use case by choosing among implemented options. RESULTS: The estimateR R package allows users to estimate the effective reproductive number of an epidemic outbreak based on observed cases, hospitalization, death or any other type of event documenting past infections, in a fast and timely fashion. We validated the implementation with a simulation study: estimateR yielded estimates comparable to alternative publicly available methods while being around two orders of magnitude faster. We then applied estimateR to empirical case-confirmation incidence data for COVID-19 in nine countries and for dengue fever in Brazil; in parallel, estimateR is already being applied (i) to SARS-CoV-2 measurements in wastewater data and (ii) to study influenza transmission based on wastewater and clinical data in other studies. In summary, this R package provides a fast and flexible implementation to estimate the effective reproductive number for various diseases and datasets. CONCLUSIONS: The estimateR R package is a modular and extendable tool designed for outbreak surveillance and retrospective outbreak investigation. It extends the method developed for COVID-19 by Huisman et al. and makes it available for a variety of pathogens, outbreak scenarios, and observation types. Estimates obtained with estimateR can be interpreted directly or used to inform more complex epidemic models (e.g. for forecasting) on the value of [Formula: see text].


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Número Básico de Reproducción , Estudios Retrospectivos , Aguas Residuales
12.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893876

RESUMEN

The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken. Reassortment reshuffles the segments of different parent lineages upon a coinfection event, which means that the shared history of viruses has to be represented by a network instead of a tree. Therefore, full genome analyses of such viruses are complex or even impossible. Although this problem has been addressed for unstructured populations, it is still impossible to account for population structure, such as induced by different host populations, whereas also accounting for reassortment. We address this by extending the structured coalescent to account for reassortment and present a framework for investigating possible ties between reassortment and migration (host jump) events. This method can accurately estimate subpopulation dependent effective populations sizes, reassortment, and migration rates from simulated data. Additionally, we apply the new model to avian influenza A/H5N1 sequences, sampled from two avian host types, Anseriformes and Galliformes. We contrast our results with a structured coalescent without reassortment inference, which assumes independently evolving segments. This reveals that taking into account segment reassortment and using sequencing data from several viral segments for joint phylodynamic inference leads to different estimates for effective population sizes, migration, and clock rates. This new model is implemented as the Structured Coalescent with Reassortment package for BEAST 2.5 and is available at https://github.com/jugne/SCORE.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , Animales , Genoma Viral , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Filogenia , Virus Reordenados/genética
13.
Mol Biol Evol ; 39(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35921544

RESUMEN

Infectious diseases are particularly challenging for genome-wide association studies (GWAS) because genetic effects from two organisms (pathogen and host) can influence a trait. Traditional GWAS assume individual samples are independent observations. However, pathogen effects on a trait can be heritable from donor to recipient in transmission chains. Thus, residuals in GWAS association tests for host genetic effects may not be independent due to shared pathogen ancestry. We propose a new method to estimate and remove heritable pathogen effects on a trait based on the pathogen phylogeny prior to host GWAS, thus restoring independence of samples. In simulations, we show this additional step can increase GWAS power to detect truly associated host variants when pathogen effects are highly heritable, with strong phylogenetic correlations. We applied our framework to data from two different host-pathogen systems, HIV in humans and X. arboricola in A. thaliana. In both systems, the heritability and thus phylogenetic correlations turn out to be low enough such that qualitative results of GWAS do not change when accounting for the pathogen shared ancestry through a correction step. This means that previous GWAS results applied to these two systems should not be biased due to shared pathogen ancestry. In summary, our framework provides additional information on the evolutionary dynamics of traits in pathogen populations and may improve GWAS if pathogen effects are highly phylogenetically correlated amongst individuals in a cohort.


Asunto(s)
Enfermedades Transmisibles , Estudio de Asociación del Genoma Completo , Enfermedades Transmisibles/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
14.
Bioinformatics ; 38(6): 1735-1737, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954792

RESUMEN

SUMMARY: The CoV-Spectrum website supports the identification of new SARS-CoV-2 variants of concern and the tracking of known variants. Its flexible amino acid and nucleotide mutation search allows querying of variants before they are designated by a lineage nomenclature system. The platform brings together SARS-CoV-2 data from different sources and applies analyses. Results include the proportion of different variants over time, their demographic and geographic distributions, common mutations, hospitalization and mortality probabilities, estimates for transmission fitness advantage and insights obtained from wastewater samples. AVAILABILITY AND IMPLEMENTATION: CoV-Spectrum is available at https://cov-spectrum.org. The code is released under the GPL-3.0 license at https://github.com/cevo-public/cov-spectrum-website.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Aminoácidos , Mutación
15.
Syst Biol ; 71(6): 1440-1452, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35608305

RESUMEN

Phylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, the number of lineages through time, based on molecular sequence data. In the fields of epidemiology and macroevolution, these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of "total-evidence" analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, that is, lacking morphological and molecular data, which we call occurrences, provide invaluable information to estimate the past number of lineages. Here, we present new methodological developments around the fossilized birth-death process enabling us to (i) incorporate occurrence data in the likelihood function; (ii) consider piecewise-constant birth, death, and sampling rates; and (iii) estimate the past number of lineages, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions. We finally illustrate our new implementation using two empirical data sets stemming from the fields of epidemiology and macroevolution. In epidemiology, we infer the prevalence of the coronavirus disease 2019 outbreak on the Diamond Princess ship, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we infer the diversity trajectory of cetaceans using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. The joint modeling of occurrences and trees holds the promise to further bridge the gap between traditional epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics. [Birth-death model; epidemiology; fossils; macroevolution; occurrences; phylogenetics; skyline.].


Asunto(s)
COVID-19 , Animales , Teorema de Bayes , Cetáceos , Fósiles , Humanos , Paleontología , Filogenia
16.
Proc Natl Acad Sci U S A ; 117(29): 17104-17111, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631984

RESUMEN

Reassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process. In order to perform inference under this model, we present an efficient Markov chain Monte Carlo algorithm to sample rooted networks and the embedding of phylogenetic trees within networks. This algorithm provides the means to jointly infer coalescent and reassortment rates with the reassortment network and the embedding of segments in that network from full-genome sequence data. Studying reassortment patterns of different human influenza datasets, we find large differences in reassortment rates across different human influenza viruses. Additionally, we find that reassortment events predominantly occur on selectively fitter parts of reassortment networks showing that on a population level, reassortment positively contributes to the fitness of human influenza viruses.


Asunto(s)
Gripe Humana/virología , Modelos Genéticos , Orthomyxoviridae/genética , Virus Reordenados/genética , Algoritmos , Evolución Molecular , Genoma Viral/genética , Humanos , Modelos Estadísticos , Filogenia
17.
Euro Surveill ; 28(45)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37943503

RESUMEN

BackgroundThe earliest recognised infections by the SARS-CoV-2 Omicron variant (Pango lineage B.1.1.529) in Belgium and Switzerland suggested a connection to an international water polo tournament, held 12-14 November 2021 in Brno, Czechia.AimTo study the arrival and subsequent spread of the Omicron variant in Belgium and Switzerland, and understand the overall importance of this international sporting event on the number of infections in the two countries.MethodsWe performed intensive forward and backward contact tracing in both countries, supplemented by phylogenetic investigations using virus sequences of the suspected infection chain archived in public databases.ResultsThrough contact tracing, we identified two and one infected athletes of the Belgian and Swiss water polo teams, respectively, and subsequently also three athletes from Germany. In Belgium and Switzerland, four and three secondary infections, and three and one confirmed tertiary infections were identified. Phylogenetic investigation demonstrated that this sporting event played a role as the source of infection, but without a direct link with infections from South Africa and not as a superspreading event; the virus was found to already be circulating at that time in the countries involved.ConclusionThe SARS-CoV-2 Omicron variant started to circulate in Europe several weeks before its identification in South Africa on 24 November 2021. Accordingly, it can be assumed that travel restrictions are usually implemented too late to prevent the spread of newly detected SARS-CoV-2 variants to other regions. Phylogenetic analysis may modify the perception of an apparently clear result of intensive contact tracing.


Asunto(s)
COVID-19 , Deportes Acuáticos , Humanos , SARS-CoV-2/genética , Bélgica/epidemiología , Suiza/epidemiología , República Checa , Filogenia , COVID-19/epidemiología , Alemania
18.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410128

RESUMEN

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genómica , Humanos , Mutación , SARS-CoV-2/genética , Secuenciación Completa del Genoma
19.
Proc Biol Sci ; 289(1986): 20221844, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350216

RESUMEN

The development of organisms and tissues is dictated by an elaborate balance between cell division, apoptosis and differentiation: the cell population dynamics. To quantify these dynamics, we propose a phylodynamic inference approach based on single-cell lineage recorder data. We developed a Bayesian phylogenetic framework-time-scaled developmental trees (TiDeTree)-that uses lineage recorder data to estimate time-scaled single-cell trees. By implementing TiDeTree within BEAST 2, we enable joint inference of the time-scaled trees and the cell population dynamics. We validated TiDeTree using simulations and showed that performance further improves when including multiple independent sources of information into the inference, such as frequencies of editing outcomes or experimental replicates. We benchmarked TiDeTree against state-of-the-art methods and show comparable performance in terms of tree topology, plus direct assessment of uncertainty and co-estimation of additional parameters. To demonstrate TiDeTree's use in practice, we analysed a public dataset containing lineage data from approximately 100 stem cell colonies. We estimated a time-scaled phylogeny for each colony; as well as the cell division and apoptosis rates underlying the growth dynamics of all colonies. We envision that TiDeTree will find broad application in the analysis of single-cell lineage tracing data, which will improve our understanding of cellular processes during development.


Asunto(s)
Modelos Genéticos , Filogenia , Teorema de Bayes , Incertidumbre , Dinámica Poblacional
20.
PLoS Pathog ; 16(11): e1008984, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211775

RESUMEN

Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, its local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. While we did not find that transmission dynamics in Basel correlate with humidity or school closures, we did find some evidence that it may positively correlated with temperature. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network. In the remaining transmission network, our analyses suggest that school-aged children likely play a more central role than pre-school aged children. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities.


Asunto(s)
Brotes de Enfermedades , Epidemias , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Adolescente , Niño , Preescolar , Ciudades , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/transmisión , Gripe Humana/virología , Filogenia , Estaciones del Año , Suiza/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda