Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Ecol ; 33(4): e17242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084851

RESUMEN

Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.


Asunto(s)
Epichloe , Epichloe/genética , Genoma , Poaceae/genética , Genómica , Plantas/genética , Selección Genética
2.
Mol Ecol ; 33(10): e17255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38133599

RESUMEN

Understanding how phenotypic divergence arises among natural populations remains one of the major goals in evolutionary biology. As part of competitive exclusion experiment conducted in 1971, 10 individuals of Italian wall lizard (Podarcis siculus (Rafinesque-Schmaltz, 1810)) were transplanted from Pod Kopiste Island to the nearby island of Pod Mrcaru (Adriatic Sea). Merely 35 years after the introduction, the newly established population on Pod Mrcaru Island had shifted their diet from predominantly insectivorous towards omnivorous and changed significantly in a range of morphological, behavioural, physiological and ecological characteristics. Here, we combine genomic and quantitative genetic approaches to determine the relative roles of genetic adaptation and phenotypic plasticity in driving this rapid phenotypic shift. Our results show genome-wide genetic differentiation between ancestral and transplanted population, with weak genetic erosion on Pod Mrcaru Island. Adaptive processes following the founder event are indicated by highly differentiated genomic loci associating with ecologically relevant phenotypic traits, and/or having a putatively adaptive role across multiple lizard populations. Diverged traits related to head size and shape or bite force showed moderate heritability in a crossing experiment, but between-population differences in these traits did not persist in a common garden environment. Our results confirm the existence of sufficient additive genetic variance for traits to evolve under selection while also demonstrating that phenotypic plasticity and/or genotype by environment interactions are the main drivers of population differentiation at this early evolutionary stage.


Asunto(s)
Efecto Fundador , Genética de Población , Lagartos , Fenotipo , Animales , Lagartos/genética , Islas , Variación Genética , Italia , Adaptación Fisiológica/genética , Masculino
3.
Genomics ; 113(6): 4267-4275, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34774981

RESUMEN

Epichloe fungi are endophytes of cool season grasses, both wild species and commercial cultivars, where they may exhibit mutualistic or pathogenic lifestyles. The Epichloe-grass symbiosis is of great interest to agricultural research for the fungal bioprotective properties conferred to host grasses but also serves as an ideal system to study the evolution of fungal plant-pathogens in natural environments. Here, we assembled and annotated gapless chromosome-level genomes of two pathogenic Epichloe sibling species. Both genomes have a bipartite genome organization, with blocks of highly syntenic gene-rich regions separated by blocks of AT-rich DNA. The AT-rich regions show an extensive signature of RIP (repeat-induced point mutation) and the expansion of this compartment accounts for the large difference in genome size between the two species. This study reveals how the rapid evolution of repeat structure can drive divergence between closely related taxa and highlights the evolutionary role of dynamic compartments in fungal genomes.


Asunto(s)
Epichloe , Cromosomas , Endófitos/genética , Epichloe/genética , Evolución Molecular , Genoma Fúngico , Poaceae/genética , Simbiosis/genética
4.
Mol Ecol ; 26(6): 1456-1464, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28160333

RESUMEN

Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for 'Adaptation to a Changing Environment' organized a conference entitled 'The genomic basis of eco-evolutionary change' and brought together experts in ecological genomics and eco-evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco-evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco-evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco-evolutionary dynamics and recommend future avenues of research in eco-evolutionary dynamics.


Asunto(s)
Evolución Biológica , Ecología , Genómica , Congresos como Asunto , Ecosistema , Ambiente
5.
Mol Ecol ; 24(9): 2241-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25611725

RESUMEN

Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Elementos Transponibles de ADN , Variación Genética , Especies Introducidas , Mapeo Cromosómico , Estudios de Asociación Genética , Genética de Población , Sitios de Carácter Cuantitativo
6.
Mol Plant Pathol ; 25(1): e13407, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009399

RESUMEN

The major resistance gene BvCR4 recently bred into sugar beet hybrids provides a high level of resistance to Cercospora leaf spot caused by the fungal pathogen Cercospora beticola. The occurrence of pathogen strains that overcome BvCR4 was studied using field trials in Switzerland conducted under natural disease pressure. Virulence of a subset of these strains was evaluated in a field trial conducted under elevated artificial disease pressure. We created a new C. beticola reference genome and mapped whole genome sequences of 256 isolates collected in Switzerland and Germany. These were combined with virulence phenotypes to conduct three separate genome-wide association studies (GWAS) to identify candidate avirulence genes. We identified a locus associated with avirulence containing a putative avirulence effector gene named AvrCR4. All virulent isolates either lacked AvrCR4 or had nonsynonymous mutations within the gene. AvrCR4 was present in all 74 isolates from non-BvCR4 hybrids, whereas 33 of 89 isolates from BvCR4 hybrids carried a deletion. We also mapped genomic data from 190 publicly available US isolates to our new reference genome. The AvrCR4 deletion was found in only one of 95 unique isolates from non-BvCR4 hybrids in the United States. AvrCR4 presents a unique example of an avirulence effector in which virulent alleles have only recently emerged. Most likely these were selected out of standing genetic variation after deployment of BvCR4. Identification of AvrCR4 will enable real-time screening of C. beticola populations for the emergence and spread of virulent isolates.


Asunto(s)
Ascomicetos , Estudio de Asociación del Genoma Completo , Ascomicetos/genética , Cercospora/genética , Mutación , Virulencia/genética , Enfermedades de las Plantas/microbiología
7.
Mob DNA ; 15(1): 10, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711146

RESUMEN

BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.

8.
Genome Res ; 20(4): 496-502, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20357051

RESUMEN

The extent of nonrandom association of alleles at two or more loci, termed linkage disequilibrium (LD), can reveal much about population demography, selection, and recombination rate, and is a key consideration when designing association mapping studies. Here, we describe a genome-wide analysis of LD in the zebra finch (Taeniopygia guttata) using 838 single nucleotide polymorphisms and present LD maps for all assembled chromosomes. We found that LD declined with physical distance approximately five times faster on the microchromosomes compared to macrochromosomes. The distribution of LD across individual macrochromosomes also varied in a distinct pattern. In the center of the macrochromosomes there were large blocks of markers, sometimes spanning tens of mega bases, in strong LD whereas on the ends of macrochromosomes LD declined more rapidly. Regions of high LD were not simply the result of suppressed recombination around the centromere and this pattern has not been observed previously in other taxa. We also found evidence that this pattern of LD has remained stable across many generations. The variability in LD between and within chromosomes has important implications for genome wide association studies in birds and for our understanding of the distribution of recombination events and the processes that govern them.


Asunto(s)
Cromosomas , Pinzones/genética , Variación Genética , Genoma , Desequilibrio de Ligamiento , Animales , Mapeo Cromosómico , Cromosomas/genética , Evolución Molecular , Variación Genética/fisiología , Genética de Población , Genoma/genética , Estudio de Asociación del Genoma Completo , Linaje , Polimorfismo de Nucleótido Simple , Recombinación Genética
9.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37774498

RESUMEN

Osmotic stress is a ubiquitous and potent stress for all living organisms, but few studies have investigated the genetic basis of salt tolerance in filamentous fungi. The main aim of this study was to identify regions of the genome associated with tolerance to potassium chloride (KCl) in the wheat pathogen Zymoseptoria tritici. A secondary aim was to identify candidate genes affecting salt tolerance within the most promising chromosomal regions. We achieved these aims with a quantitative trait locus (QTL) mapping study using offspring from 2 crosses grown in vitro in the presence or absence of osmotic stress imposed by 0.75 M KCl. We identified significant QTL for most of the traits in both crosses. Several QTLs overlapped with QTL identified in earlier studies for other traits, and some QTL explained trait variation in both the control and salt stress environments. A significant QTL on chromosome 3 explained variation in colony radius at 8-day postinoculation (dpi) in the KCl environment as well as colony radius KCl tolerance at 8 dpi. The QTL peak had a high logarithm of the odds ratio (LOD) and encompassed an interval containing only 36 genes. Six of these genes present promising candidates for functional analyses. A gene ontology (GO) enrichment analysis of QTL unique to the KCl environment found evidence for the enrichment of functions involved in osmotic stress responses.


Asunto(s)
Ascomicetos , Sitios de Carácter Cuantitativo , Osmorregulación , Mapeo Cromosómico , Ascomicetos/genética , Fenotipo
10.
BMC Genomics ; 12: 554, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22077994

RESUMEN

BACKGROUND: Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics. RESULTS: Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations. CONCLUSIONS: This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.


Asunto(s)
Genómica/normas , Lagartos/genética , Terminología como Asunto , Animales , Secuencia Conservada , Elementos Transponibles de ADN , Evolución Molecular , Marcadores Genéticos , Lagartos/clasificación , Repeticiones de Microsatélite , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda