Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268561

RESUMEN

MerTK (Mer tyrosine kinase), a receptor tyrosine kinase, is ectopically or aberrantly expressed in numerous human hematologic and solid malignancies. Although a variety of MerTK targeting therapies are being developed to enhance outcomes for patients with various cancers, the sensitivity of tumors to MerTK suppression may not be uniform due to the heterogeneity of solid tumors and different tumor stages. In this report, we develop a series of radiolabeled agents as potential MerTK PET (positron emission tomography) agents. In our initial in vivo evaluation, [18F]-MerTK-6 showed prominent uptake rate (4.79 ± 0.24%ID/g) in B16F10 tumor-bearing mice. The tumor to muscle ratio reached 1.86 and 3.09 at 0.5 and 2 h post-injection, respectively. In summary, [18F]-MerTK-6 is a promising PET agent for MerTK imaging and is worth further evaluation in future studies.


Asunto(s)
Tirosina Quinasa c-Mer
2.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38556760

RESUMEN

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral
3.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562906

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

4.
ACS Chem Biol ; 18(8): 1846-1853, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37556795

RESUMEN

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Dominios PR-SET , N-Metiltransferasa de Histona-Lisina/metabolismo , Ligandos , Metilación , Dominio Tudor
5.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214894

RESUMEN

Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( R,R )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, ( R,R )-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with ( R,R )-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. ( R,R )-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide, and that this activity is stimulated by ( R,R )-59 primarily through an increase in catalytic activity rather than a change in SAM binding.

6.
J Med Chem ; 65(9): 6869-6887, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35467861

RESUMEN

Obesity and obesity-induced metabolic dysfunctions are significant risk factors for nonalcoholic fatty liver disease and cardiovascular diseases. Thus, obesity is an economic and social burden in developed countries. Blocking the synthesis of inositol pyrophosphates by inositol hexakisphosphate kinase (IP6K) has been identified as a potential therapeutic strategy for obesity and related diseases. We have developed a novel and potent IP6K inhibitor 20 (UNC7467) (IC50 values: IP6K1 8.9 nM; IP6K2 4.9 nM; IP6K3 1320 nM). Inositol phosphate profiling of the HCT116 colon cancer cell line demonstrates that 20 reduced levels of inositol pyrophosphates by 66-81%, without significantly perturbing levels of other inositol phosphates. Furthermore, intraperitoneal injection of 20 in diet-induced obese mice improved glycemic profiles, ameliorated hepatic steatosis, and reduced weight gain without altering food intake. Thus, inhibitor 20 can be used as an in vivo probe for IP6K-related research. Moreover, it may have therapeutic relevance in treating obesity and related diseases.


Asunto(s)
Difosfatos , Fosfatos de Inositol , Animales , Células HCT116 , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Obesidad/tratamiento farmacológico , Fosfotransferasas (Aceptor del Grupo Fosfato)
7.
Eur J Med Chem ; 220: 113534, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34038857

RESUMEN

Inhibition of MER receptor tyrosine kinase (MERTK) causes direct tumor cell killing and stimulation of the innate immune response. Therefore, MERTK has been identified as a therapeutic target in a wide variety of human tumors. Clinical trials targeting MERTK have recently been initiated, however, none of these drugs are MERTK-specific. Herein, we present the discovery of a highly MERTK-selective inhibitor UNC5293 (24). UNC5293 has subnanomolar activity against MERTK with an excellent Ambit selectivity score (S50 (100 nM) = 0.041). It mediated potent and selective inhibition of MERTK in cell-based assays. Furthermore, it has excellent mouse PK properties (7.8 h half-life and 58% oral bioavailability) and was active in bone marrow leukemia cells in a murine model.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Administración Oral , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Congénicos , Ratones Endogámicos NOD , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tirosina Quinasa c-Mer/metabolismo
8.
Biochem Pharmacol ; 186: 114437, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33571503

RESUMEN

MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.


Asunto(s)
Proliferación Celular/fisiología , Glioblastoma/enzimología , Células Madre Neoplásicas/enzimología , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Tirosina Quinasa c-Mer/biosíntesis , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclohexanoles/farmacología , Relación Dosis-Respuesta a Droga , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Eur J Med Chem ; 226: 113822, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34563964

RESUMEN

MER tyrosine kinase (MERTK) upregulation is associated with M2 polarization of microglia, which plays a vital role in neuroregeneration following damage induced by neuroinflammatory diseases such as multiple sclerosis (MS). Therefore, a radiotracer specific for MERTK could be of great utility in the clinical management of MS, for the detection and differentiation of neuroregenerative and neurodegenerative processes. This study aimed to develop an [18F] ligand with high affinity and selectivity for MERTK as a potential positron emission tomography (PET) radiotracer. MIPS15691 and MIPS15692 were synthesized and kinase assays were utilized to determine potency and selectivity for MERTK. Both compounds were shown to be potent against MERTK, with respective IC50 values of 4.6 nM and 4.0 nM, and were also MERTK-selective. Plasma and brain pharmacokinetics were measured in mice and led to selection of MIPS15692 over MIPS15691. X-ray crystallography was used to visualize how MIPS15692 is recognized by the enzyme. [18F]MIPS15692 was synthesized using an automated iPHASE FlexLab module, with a molar activity (Am) of 49 ± 26 GBq/µmol. The radiochemical purity of [18F]MIPS15692 was >99% and the decay-corrected radiochemical yields (RCYs) were determined as 2.45 ± 0.85%. Brain MERTK protein density was measured by a saturation binding assay in the brain slices of a cuprizone mouse model of MS. High levels of specific binding of [18F]MIPS15692 to MERTK were found, especially in the corpus callosum/hippocampus (CC/HC). The in vivo PET imaging study of [18F]MIPS15692 suggested that its neuroPK is sub-optimal for clinical use. Current efforts are underway to optimize the neuroPK of our next generation PET radiotracers for maximal in vivo utility.


Asunto(s)
Desarrollo de Medicamentos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Radiofármacos/farmacología , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Ratones , Estructura Molecular , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/química , Relación Estructura-Actividad , Tirosina Quinasa c-Mer/análisis , Tirosina Quinasa c-Mer/metabolismo
10.
J Med Chem ; 62(3): 1443-1454, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30624931

RESUMEN

Dietary flavonoids inhibit certain protein kinases and phospholipid kinases by competing for their ATP-binding sites. These nucleotide pockets have structural elements that are well-conserved in two human small-molecule kinases, inositol hexakisphosphate kinase (IP6K) and inositol polyphosphate multikinase (IPMK), which synthesize multifunctional inositol phosphate cell signals. Herein, we demonstrate that both kinases are inhibited by quercetin and 16 related flavonoids; IP6K is the preferred target. Relative inhibitory activities were rationalized by X-ray analysis of kinase/flavonoid crystal structures; this detailed structure-activity analysis revealed hydrophobic and polar ligand/protein interactions, the degree of flexibility of key amino acid side chains, and the importance of water molecules. The seven most potent IP6K inhibitors were incubated with intact HCT116 cells at concentrations of 2.5 µM; diosmetin was the most selective and effective IP6K inhibitor (>70% reduction in activity). Our data can instruct on pharmacophore properties to assist the future development of inositol phosphate kinase inhibitors. Finally, we propose that dietary flavonoids may inhibit IP6K activity in cells that line the gastrointestinal tract.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quercetina/farmacología , Sitios de Unión , Cristalografía por Rayos X , Células HCT116 , Humanos , Fosfatos de Inositol/metabolismo , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/química , Quercetina/metabolismo , Relación Estructura-Actividad
11.
SLAS Discov ; 23(9): 982-988, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29842835

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks) regulate a myriad of cellular processes, not only through their catalytic activity (which synthesizes InsP7, a multifunctional inositol pyrophosphate signaling molecule) but also through protein-protein interactions. To further study the enzymatic function and distinguish between these different mechanisms, specific inhibitors that target IP6K catalytic activity are required. Only one IP6K inhibitor is commonly used: N2-( m-(trifluoromethyl)benzyl) N6-( p-nitrobenzyl)purine (TNP). TNP is, however, compromised by weak potency, inability to distinguish between IP6K isoenzymes, off-target activities, and poor pharmacokinetic properties. Herein, we describe a new inhibitor discovery strategy, based on the high degree of structural conservation of the nucleotide-binding sites of IP6Ks and protein kinases; we screened for novel IP6K2 inhibitors using a focused set of compounds with features known, or computationally predicted, to target nucleotide binding by protein kinases. We developed a time-resolved fluorescence resonance energy transfer (TR-FRET) assay of adenosine diphosphate (ADP) formation from adenosine triphosphate (ATP). Novel hit compounds for IP6K2 were identified and validated with dose-response curves and an orthogonal assay. None of these inhibitors affected another inositol pyrophosphate kinase, PPIP5K. Our screening strategy offers multiple IP6K2 inhibitors for future development and optimization. This approach will be applicable to inhibitor discovery campaigns for other inositol phosphate kinases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Proteínas Quinasas/química , Relación Estructura-Actividad
12.
J Med Chem ; 61(22): 10242-10254, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30347155

RESUMEN

Although all kinases share the same ATP binding pocket, subtle differences in the residues that form the pocket differentiate individual kinases' affinity for ATP competitive inhibitors. We have found that by introducing a single methyl group, the selectivity of our MERTK inhibitors over another target, FLT3, was increased up to 1000-fold (compound 31). Compound 19 was identified as an in vivo tool compound with subnanomolar activity against MERTK and 38-fold selectivity over FLT3 in vitro. The potency and selectivity of 19 for MERTK over FLT3 were confirmed in cell-based assays using human cancer cell lines. Compound 19 had favorable pharmacokinetic properties in mice. Phosphorylation of MERTK was decreased by 75% in bone marrow leukemia cells from mice treated with 19 compared to vehicle-treated mice.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Metilación , Ratones , Modelos Moleculares , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Relación Estructura-Actividad , Distribución Tisular , Tirosina Quinasa c-Mer/química , Tirosina Quinasa c-Mer/metabolismo
13.
ChemMedChem ; 12(3): 207-213, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28032464

RESUMEN

Macrocycles have attracted significant attention in drug discovery recently. In fact, a few de novo designed macrocyclic kinase inhibitors are currently in clinical trials with good potency and selectivity for their intended target. In this study, we successfully engaged a structure-based drug design approach to discover macrocyclic pyrimidines as potent Mer tyrosine kinase (MerTK)-specific inhibitors. An enzyme-linked immunosorbent assay (ELISA) in 384-well format was employed to evaluate the inhibitory activity of macrocycles in a cell-based assay assessing tyrosine phosphorylation of MerTK. Through structure-activity relationship (SAR) studies, analogue 11 [UNC2541; (S)-7-amino-N-(4-fluorobenzyl)-8-oxo-2,9,16-triaza-1(2,4)-pyrimidinacyclohexadecaphane-1-carboxamide] was identified as a potent and MerTK-specific inhibitor that exhibits sub-micromolar inhibitory activity in the cell-based ELISA. In addition, an X-ray structure of MerTK protein in complex with 11 was resolved to show that these macrocycles bind in the MerTK ATP pocket.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirimidinas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Ensayo de Inmunoadsorción Enzimática , Humanos , Enlace de Hidrógeno , Concentración 50 Inhibidora , Compuestos Macrocíclicos/química , Simulación del Acoplamiento Molecular , Fosforilación , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Pirimidinas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Tirosina Quinasa c-Mer
14.
J Med Chem ; 49(22): 6439-42, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17064063

RESUMEN

Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.


Asunto(s)
Compuestos de Bifenilo/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Inhibidores de Serina Proteinasa/farmacología , Triazoles/farmacología , Animales , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/farmacocinética , Ciclohexenos/química , Diabetes Mellitus Tipo 2/genética , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Femenino , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacocinética , Modelos Moleculares , Ratas , Ratas Zucker , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/farmacocinética , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/farmacocinética , Difracción de Rayos X
15.
J Med Chem ; 49(12): 3520-35, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16759095

RESUMEN

A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.


Asunto(s)
Fármacos Antiobesidad/síntesis química , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/síntesis química , Nitrilos/síntesis química , Inhibidores de Proteasas/síntesis química , Pirrolidinas/síntesis química , Animales , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/farmacología , Glucemia/análisis , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Medicamentos , Prueba de Tolerancia a la Glucosa , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Modelos Moleculares , Nitrilos/farmacocinética , Nitrilos/farmacología , Inhibidores de Proteasas/farmacocinética , Inhibidores de Proteasas/farmacología , Pirrolidinas/farmacocinética , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Estereoisomerismo , Relación Estructura-Actividad
16.
J Med Chem ; 49(12): 3563-80, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16759099

RESUMEN

The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.


Asunto(s)
Aminopiridinas/síntesis química , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Aminopiridinas/química , Aminopiridinas/farmacología , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Cristalografía por Rayos X , Semivida , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Modelos Moleculares , Fosforilación , Conformación Proteica , Ratas , Ratas Sprague-Dawley
17.
J Med Chem ; 49(21): 6416-20, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17034148

RESUMEN

Dipeptidyl peptidase-IV (DPP-IV) inhibitors are poised to be the next major drug class for the treatment of type 2 diabetes. Structure-activity studies of substitutions at the C5 position of the 2-cyanopyrrolidide warhead led to the discovery of potent inhibitors of DPP-IV that lack activity against DPP8 and DPP9. Further modification led to an extremely potent (Ki(DPP)(-)(IV) = 1.0 nM) and selective (Ki(DPP8) > 30 microM; Ki(DPP9) > 30 microM) clinical candidate, ABT-279, that is orally available, efficacious, and remarkably safe in preclinical safety studies.


Asunto(s)
Inhibidores de la Adenosina Desaminasa , Inhibidores de la Dipeptidil-Peptidasa IV , Glicoproteínas/antagonistas & inhibidores , Hipoglucemiantes/síntesis química , Piridinas/síntesis química , Pirrolidinas/síntesis química , Adenosina Desaminasa/química , Administración Oral , Animales , Sitios de Unión , Células CACO-2 , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipeptidil Peptidasa 4/química , Perros , Femenino , Intolerancia a la Glucosa/tratamiento farmacológico , Glicoproteínas/química , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Macaca fascicularis , Modelos Moleculares , Estructura Molecular , Piridinas/farmacocinética , Piridinas/farmacología , Pirrolidinas/farmacocinética , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Estereoisomerismo , Relación Estructura-Actividad
18.
PLoS One ; 11(10): e0164378, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736936

RESUMEN

Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 µM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 µM) and UNC10225498 (Kd = 1.37 ± 0.03 µM). These Kd values lie within the 1-10 µM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 µM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.


Asunto(s)
Inhibidores Enzimáticos/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Sitios de Unión , Biocatálisis , Calorimetría , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
19.
ACS Med Chem Lett ; 7(12): 1044-1049, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27994735

RESUMEN

Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

20.
JCI Insight ; 1(3): e85630, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27158668

RESUMEN

FMS-like tyrosine kinase 3-targeted (FLT3-targeted) therapies have shown initial promise for the treatment of acute myeloid leukemia (AML) expressing FLT3-activating mutations; however, resistance emerges rapidly. Furthermore, limited options exist for the treatment of FLT3-independent AML, demonstrating the need for novel therapies that reduce toxicity and improve survival. MERTK receptor tyrosine kinase is overexpressed in 80% to 90% of AMLs and contributes to leukemogenesis. Here, we describe MRX-2843, a type 1 small-molecule tyrosine kinase inhibitor that abrogates activation of both MERTK and FLT3 and their downstream effectors. MRX-2843 treatment induces apoptosis and inhibits colony formation in AML cell lines and primary patient samples expressing MERTK and/or FLT3-ITD, with a wide therapeutic window compared with that of normal human cord blood cells. In murine orthotopic xenograft models, once-daily oral therapy prolonged survival 2- to 3-fold over that of vehicle-treated controls. Additionally, MRX-2843 retained activity against quizartinib-resistant FLT3-ITD-mutant proteins with clinically relevant alterations at the D835 or F691 loci and prolonged survival in xenograft models of quizartinib-resistant AML. Together, these observations validate MRX-2843 as a translational agent and support its clinical development for the treatment of AML.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda