Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ann Bot ; 129(1): 1-14, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351372

RESUMEN

BACKGROUND AND AIMS: Hybridization is increasingly recognized as an integral part of the dynamics of species range expansion and contraction. Thus, it is important to understand the reproductive barriers between co-occurring species. Extending previous studies that argued that the rare Eucalyptus risdonii was expanding into the range of the surrounding E. amygdalina by both seed and pollen dispersal, we here investigate the long-term fitness of both species and their hybrids and whether expansion is continuing. METHODS: We assessed the survival of phenotypes representing a continuum between the two pure species in a natural hybrid swarm after 29 years, along with seedling recruitment. The performance of pure species as well as of artificial and natural hybrids was also assessed over 28 years in a common garden trial. KEY RESULTS: In the hybrid zone, E. amygdalina adults showed greater mortality than E. risdonii, and the current seedling cohort is still dominated by E. risdonii phenotypes. Morphologically intermediate individuals appeared to be the least fit. Similar results were observed after growing artificial first-generation and natural hybrids alongside pure species families in a common garden trial. Here, the survival, reproduction, health and growth of the intermediate hybrids were significantly less than those of either pure species, consistent with hybrid inferiority, although this did not manifest until later reproductive ages. Among the variable progeny of natural intermediate hybrids, the most E. risdonii-like phenotypes were the most fit. CONCLUSIONS: This study contributes to the increasing number of reports of hybrid inferiority in Eucalyptus, suggesting that post-zygotic barriers contribute to the maintenance of species integrity even between closely related species. However, with fitness rapidly recovered following backcrossing, it is argued that hybridization can still be an important evolutionary process, in the present case appearing to contribute to the range expansion of the rare E. risdonii in response to climate change.


Asunto(s)
Eucalyptus , Evolución Biológica , Cambio Climático , Eucalyptus/genética , Hibridación Genética , Reproducción
2.
Am J Bot ; 86(1): 98-107, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21680349

RESUMEN

Thirty-three species of Clerodendrum s.l. and five outgroup genera were included in a sequence analysis of internal transcribed spacers of the nuclear ribosomal DNA. The results of the cladistic analysis were compared to and combined with cpDNA restriction site data from a previous study. All molecular data identified four major clades within Clerodendrum s.l. and showed the genus to be polyphyletic. Clerodendrum s.s., minus Konocalyx and Cyclonema, is monophyletic and the genus should be restricted to this group. Cyclonema and Konocalyx form a clade distinct from Clerodendrum s.s., which has been recognized as Rotheca Raf.

3.
Am J Bot ; 86(7): 1038-46, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10406727

RESUMEN

Seventy-eight polymorphic cpDNA (chloroplast DNA) characters were found in 13 closely related taxa from Eucalyptus series Amygdalinae (subgenus Monocalyptus) and seven potential outgroup taxa. The strict consensus of six cladograms generated from cpDNA data confirmed monophyly of Monocalyptus. However, cpDNA phylogeny within Monocalyptus was incongruent with taxonomic classification, being more related to geography, even when accessions were from divergent series. Monocalyptus cpDNA formed two major clades. On the island of Tasmania cpDNA was restricted to a single clade, exhibited very little variation, and was phylogenetically related to cpDNA found in central and western Victoria. In contrast, cpDNA of mainland monocalypt taxa was more variable, even within the Amygdalinae. Four out of six Tasmanian Amygdalinae species were polymorphic. The difference between cpDNA of replicates was often greater than differences between species from different series. The low level of cpDNA variation and extensive morphological intergradation between the Tasmanian endemics suggest recent speciation. However, the transfer of cpDNA through hybridization between lineages is the most likely explanation for the observed sharing of cpDNA across series. This study highlights that the geographical pattern to cpDNA variation in Eucalyptus may be an important source of information on past plant distributions in Australia.

4.
Mol Phylogenet Evol ; 12(2): 215-23, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10381324

RESUMEN

Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were obtained for 35 species of Eucalyptus s.s. and seven taxa representing five outgroup genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, and Stockwellia). The sequences were analyzed cladistically. The data distinguished clearly between the two major subgenera of Eucalyptus s.s. (Symphyomyrtus and Monocalyptus) but indicated that subgenus Eudesmia may be paraphyletic. ITS sequence data demonstrated the potential to resolve relationships between sections within subgenus Symphyomyrtus. Within sections, however, taxa were poorly differentiated. At the generic level, Corymbia appeared to be paraphyletic due to the exclusion of Angophora. The positions of Allosyncarpia and Arillastrum relative to the ingroup remain unresolved. ITS sequence data may prove valuable for resolving other phylogenetic relationships at higher taxonomic levels within Eucalyptus.


Asunto(s)
ADN Ribosómico/genética , Eucalyptus/genética , Evolución Molecular , Filogenia , Plantas Medicinales , Rosales/genética , Eucalyptus/clasificación , Genes de Plantas/genética , Variación Genética/genética , Datos de Secuencia Molecular , ARN Ribosómico 5.8S/genética , Rosales/clasificación , Sensibilidad y Especificidad , Alineación de Secuencia , Análisis de Secuencia de ADN , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda