Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676252

RESUMEN

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Asunto(s)
Gangliósidos , Glicoesfingolípidos , Humanos , Clorhidrato de Erlotinib , Glicoesfingolípidos/metabolismo , Gangliósido G(M3)/genética , Gangliósido G(M3)/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Transducción de Señal
2.
Hum Mol Genet ; 32(5): 732-744, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36067040

RESUMEN

Mono- and bi-allelic variants in ALDH18A1 cause a spectrum of human disorders associated with cutaneous and neurological findings that overlap with both cutis laxa and spastic paraplegia. ALDH18A1 encodes the bifunctional enzyme pyrroline-5-carboxylate synthetase (P5CS) that plays a role in the de novo biosynthesis of proline and ornithine. Here we characterize a previously unreported homozygous ALDH18A1 variant (p.Thr331Pro) in four affected probands from two unrelated families, and demonstrate broad-based alterations in amino acid and antioxidant metabolism. These four patients exhibit variable developmental delay, neurological deficits and loose skin. Functional characterization of the p.Thr331Pro variant demonstrated a lack of any impact on the steady-state level of the P5CS monomer or mitochondrial localization of the enzyme, but reduced incorporation of the monomer into P5CS oligomers. Using an unlabeled NMR-based metabolomics approach in patient fibroblasts and ALDH18A1-null human embryonic kidney cells expressing the variant P5CS, we identified reduced abundance of glutamate and several metabolites derived from glutamate, including proline and glutathione. Biosynthesis of the polyamine putrescine, derived from ornithine, was also decreased in patient fibroblasts, highlighting the functional consequence on another metabolic pathway involved in antioxidant responses in the cell. RNA sequencing of patient fibroblasts revealed transcript abundance changes in several metabolic and extracellular matrix-related genes, adding further insight into pathogenic processes associated with impaired P5CS function. Together these findings shed new light on amino acid and antioxidant pathways associated with ALDH18A1-related disorders, and underscore the value of metabolomic and transcriptomic profiling to discover new pathways that impact disease pathogenesis.


Asunto(s)
Aminoácidos , Cutis Laxo , Humanos , Antioxidantes , Prolina/metabolismo , Ácido Glutámico/metabolismo , Cutis Laxo/complicaciones , Cutis Laxo/genética , Cutis Laxo/patología , Ornitina
3.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33964207

RESUMEN

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Asunto(s)
Antiportadores/genética , Trastornos Congénitos de Glicosilación/etiología , Retículo Endoplásmico/patología , Hepatopatías/complicaciones , Proteínas de Transporte de Monosacáridos/genética , Mutación , Adulto , Niño , Preescolar , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Dominantes , Glicosilación , Humanos , Lactante , Recién Nacido , Masculino , Linaje
4.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598857

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Recién Nacido , Ratones , Proteínas Portadoras/metabolismo , Cilios/patología , Riñón/metabolismo , Mutación , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Serina/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
5.
Am J Hum Genet ; 107(4): 753-762, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910914

RESUMEN

Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.


Asunto(s)
Enanismo/genética , Discapacidad Intelectual/genética , Lamina Tipo B/genética , Microcefalia/genética , Mutación , Lámina Nuclear/genética , Secuencia de Aminoácidos , Secuencia de Bases , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Preescolar , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Enanismo/diagnóstico por imagen , Enanismo/metabolismo , Enanismo/patología , Femenino , Expresión Génica , Humanos , Lactante , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Lamina Tipo B/metabolismo , Linfocitos/metabolismo , Linfocitos/patología , Imagen por Resonancia Magnética , Masculino , Microcefalia/diagnóstico por imagen , Microcefalia/metabolismo , Microcefalia/patología , Lámina Nuclear/metabolismo , Lámina Nuclear/patología
6.
Genet Med ; 23(7): 1305-1314, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33731878

RESUMEN

PURPOSE: Variants in NUS1 are associated with a congenital disorder of glycosylation, developmental and epileptic encephalopathies, and are possible contributors to Parkinson disease pathogenesis. How the diverse functions of the NUS1-encoded Nogo B receptor (NgBR) relate to these different phenotypes is largely unknown. We present three patients with de novo heterozygous variants in NUS1 that cause a complex movement disorder, define pathogenic mechanisms in cells and zebrafish, and identify possible therapy. METHODS: Comprehensive functional studies were performed using patient fibroblasts, and a zebrafish model mimicking NUS1 haploinsufficiency. RESULTS: We show that de novo NUS1 variants reduce NgBR and Niemann-Pick type C2 (NPC2) protein amount, impair dolichol biosynthesis, and cause lysosomal cholesterol accumulation. Reducing nus1 expression 50% in zebrafish embryos causes abnormal swim behaviors, cholesterol accumulation in the nervous system, and impaired turnover of lysosomal membrane proteins. Reduction of cholesterol buildup with 2-hydroxypropyl-ß-cyclodextrin significantly alleviates lysosomal proteolysis and motility defects. CONCLUSION: Our results demonstrate that these NUS1 variants cause multiple lysosomal phenotypes in cells. We show that the movement deficits associated with nus1 reduction in zebrafish arise in part from defective efflux of cholesterol from lysosomes, suggesting that treatments targeting cholesterol accumulation could be therapeutic.


Asunto(s)
Haploinsuficiencia , Enfermedad de Niemann-Pick Tipo C , Animales , Línea Celular , Colesterol , Haploinsuficiencia/genética , Humanos , Lisosomas , Fenotipo , Receptores de Superficie Celular/genética , Pez Cebra/genética
7.
Am J Med Genet A ; 185(10): 2863-2872, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34050707

RESUMEN

The DEAD/DEAH box RNA helicases are a superfamily of proteins involved in the processing and transportation of RNA within the cell. A growing literature supports this family of proteins as contributing to various types of human disorders from neurodevelopmental disorders to syndromes with multiple congenital anomalies. This article presents a cohort of nine unrelated individuals with de novo missense alterations in DDX23 (Dead-Box Helicase 23). The gene is ubiquitously expressed and functions in RNA splicing, maintenance of genome stability, and the sensing of double-stranded RNA. Our cohort of patients, gathered through GeneMatcher, exhibited features including tone abnormalities, global developmental delay, facial dysmorphism, autism spectrum disorder, and seizures. Additionally, there were a variety of other findings in the skeletal, renal, ocular, and cardiac systems. The missense alterations all occurred within a highly conserved RecA-like domain of the protein, and are located within or proximal to the DEAD box sequence. The individuals presented in this article provide evidence of a syndrome related to alterations in DDX23 characterized predominantly by atypical neurodevelopment.


Asunto(s)
Trastorno del Espectro Autista/genética , ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Inestabilidad Genómica/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/fisiopatología , Empalme del ARN/genética , ARN Bicatenario/genética , Convulsiones/complicaciones , Convulsiones/genética , Convulsiones/fisiopatología
8.
Mol Genet Metab ; 129(2): 73-79, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31645300

RESUMEN

Pompe disease is caused by the deficiency of lysosomal acid α-glucosidase (GAA) leading to progressive myopathy. Enzyme replacement therapy (ERT) with recombinant human (rh) GAA has limitations, including inefficient uptake of rhGAA in skeletal muscle linked to low cation-independent mannose-6-phosphate receptor (CI-MPR) expression. PURPOSE: To test the hypothesis that antihypertensive agents causing muscle hypertrophy by increasing insulin-like growth factor 1 expression can increase CI-MPR-mediated uptake of recombinant enzyme with therapeutic effects in skeletal muscle. METHODS: Three such agents were evaluated in mice with Pompe disease (carvedilol, losartan, and propranolol), either with or without concurrent ERT. RESULTS: Carvedilol, a selective ß-blocker, increased muscle strength but reduced biochemical correction from ERT. Administration of drugs alone had minimal effect, with the exception of losartan that increased glycogen storage and mortality either by itself or in combination with ERT. CONCLUSION: The ß-blocker carvedilol had beneficial effects during ERT in mice with Pompe disease, in comparison with propranolol or losartan. Caution is warranted when prescribing antihypertensive drugs in Pompe disease.


Asunto(s)
Antihipertensivos/uso terapéutico , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/patología , alfa-Glucosidasas/genética
9.
J Biol Chem ; 293(37): 14534-14544, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30049793

RESUMEN

Deficiency in subunits of the conserved oligomeric Golgi (COG) complex results in pleiotropic defects in glycosylation and causes congenital disorders in humans. Insight regarding the functional consequences of this defective glycosylation and the identity of specific glycoproteins affected is lacking. A chemical glycobiology strategy was adopted to identify the surface glycoproteins most sensitive to altered glycosylation in COG-deficient Chinese hamster ovary (CHO) cells. Following metabolic labeling, an unexpected increase in GalNAz incorporation into several glycoproteins, including α-dystroglycan (α-DG), was noted in cog1-deficient ldlB cells. Western blotting analysis showed a significantly lower molecular weight for α-DG in ldlB cells compared with WT CHO cells. The underglycosylated α-DG molecules on ldlB cells are highly vulnerable to bacterial proteases that co-purify with V. cholerae neuraminidase, leading to rapid removal of the protein from the cell surface. The purified bacterial mucinase StcE can cleave both WT and ldlB α-DG but did not cause rapid degradation of the fragments, implicating other V. cholerae proteases in the final proteolysis of the fragments. Extending terminal glycosylation on the existing mucin-type glycans of ldlB α-DG stabilized the resulting fragments, indicating that fragment stability, but not the initial fragmentation of the protein, is influenced by the glycosylation status of the cell. This discovery highlights a functional importance for mucin-type O-glycans found on α-DG and reinforces a growing role for these glycans as regulators of extracellular proteolysis and protein stability.


Asunto(s)
Bacterias/enzimología , Distroglicanos/metabolismo , Mucinas/metabolismo , Péptido Hidrolasas/metabolismo , Polisacárido Liasas/metabolismo , Animales , Células CHO , Cricetulus , Glicoproteínas/metabolismo , Glicosilación , Semivida
10.
J Biol Chem ; 292(36): 15094-15104, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28724630

RESUMEN

Acid hydrolases utilize a carbohydrate-dependent mechanism for lysosomal targeting. These hydrolases acquire a mannose 6-phosphate tag by the action of the GlcNAc-1-phosphotransferase enzyme, allowing them to bind receptors and traffic to endosomes. Loss of GlcNAc-1-phosphotransferase results in hydrolase hypersecretion and profound lysosomal storage. Little, however, is known about how these cellular phenotypes affect the trafficking, activity, and localization of surface glycoproteins. To address this question, we profiled the abundance of surface glycoproteins in WT and CRISPR-mediated GNPTAB-/- HeLa cells and identified changes in numerous glycoproteins, including the uptake receptor LRP1 and multiple receptor tyrosine kinases. Decreased cell surface LRP1 in GNPTAB-/- cells corresponded with a reduction in its steady-state level and less amyloid-ß-40 (Aß40) peptide uptake. GNPTAB-/- cells displayed elevated activation of several kinases including Met receptor. We found increased Met phosphorylation within both the kinase and the docking domains and observed that lower concentrations of pervanadate were needed to cause an increase in phospho-Met in GNPTAB-/- cells. Together, these data suggested a decrease in the activity of the receptor and non-receptor protein-tyrosine phosphatases that down-regulate Met phosphorylation. GNPTAB-/- cells exhibited elevated levels of reactive oxygen species, known to inactivate cell surface and cytosolic phosphatases by oxidation of active site cysteine residues. Consistent with this mode of action, peroxide treatment of parental HeLa cells elevated phospho-Met levels whereas antioxidant treatment of GNPTAB-/- cells reduced phospho-Met levels. Collectively, these findings identify new mechanisms whereby impaired lysosomal targeting can impact the activity and recycling of receptors.


Asunto(s)
Carbohidratos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Células HeLa , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-met/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Células Tumorales Cultivadas
11.
Bioessays ; 38(12): 1255-1265, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27667795

RESUMEN

Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development. Then, we will describe how patient derived induced pluripotent stem cells are being used to model human diseases such as congenital disorders of glycosylation. Collectively, these studies indicate that cell surface glycans perform critical roles in human development and disease.


Asunto(s)
Glicosilación , Células Madre Pluripotentes Inducidas/metabolismo , Errores Innatos del Metabolismo/metabolismo , Animales , Humanos , Lípidos/química , Proteínas/química , Proteínas/metabolismo
12.
J Biol Chem ; 291(8): 3982-9, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733198

RESUMEN

Selective exo-enzymatic labeling (or SEEL) uses recombinant glycosyltransferases and nucleotide-sugar analogues to allow efficient labeling of cell surface glycans. SEEL can circumvent many of the possible issues associated with metabolic labeling, including low incorporation of sugar precursors, and allows for sugars to be added selectively to different types of glycans by virtue of the inherent specificity of the glycosyltransferases. Here we compare the labeling of sialoglycoproteins in undifferentiated and differentiated human erythroleukemia cells (HEL) using SEEL using the sialyltransferases ST6Gal1 and ST3Gal1, which label N- and O-glycans, respectively. Our results show that the profile of glycoproteins detected varies between undifferentiated HEL cells and those differentiated to megakaryocytes, with a shift to more N-linked sialoglycoproteins in the differentiated cells. The efficiency of SEEL for both sialyltransferases in HEL cells was greatly increased with prior neuraminidase treatment highlighting the necessity for the presence of available acceptors with this labeling method. Following metabolic labeling or SEEL, tagged glycoproteins were enriched by immunoprecipitation and identified using mass spectrometry. The proteomic findings demonstrated that the detection of many glycoproteins is markedly improved by SEEL labeling, and that unique glycoproteins can be identified using either ST6Gal1 or ST3Gal1. Furthermore, this analysis enabled the identification of increased surface expression of several sialylated cell adhesion molecules, including the known megakaryocytic markers integrinß3 and CD44, upon differentiation of HEL cells to adherent megakaryocytes.


Asunto(s)
Marcaje Isotópico/métodos , Megacariocitos/metabolismo , Sialoglicoproteínas/biosíntesis , Animales , Antígenos CD/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Receptores de Hialuranos/biosíntesis , Integrina beta3/biosíntesis , Megacariocitos/citología , Sialiltransferasas/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa
13.
Biochim Biophys Acta ; 1860(9): 1845-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27241848

RESUMEN

Targeting soluble acid hydrolases to lysosomes requires the addition of mannose 6-phosphate residues on their N-glycans. This process is initiated by GlcNAc-1-phosphotransferase, a multi-subunit enzyme encoded by the GNPTAB and GNPTG genes. The GNPTAB gene products (the α and ß subunits) are responsible for recognition and catalysis of hydrolases whereas the GNPTG gene product (the γ subunit) enhances mannose phosphorylation of a subset of hydrolases. Here we identify and characterize a zebrafish gnptg insertional mutant and show that loss of the gamma subunit reduces mannose phosphorylation on a subset glycosidases but does not affect modification of several cathepsin proteases. We further show that glycosidases, but not cathepsins, are hypersecreted from gnptg(-/-) embryonic cells, as evidenced by reduced intracellular activity and increased circulating serum activity. The gnptg(-/-) embryos lack the gross morphological or craniofacial phenotypes shown in gnptab-deficient morphant embryos to result from altered cathepsin activity. Despite the lack of overt phenotypes, decreased fertilization and embryo survival were noted in mutants, suggesting that gnptg associated deposition of mannose 6-phosphate modified hydrolases into oocytes is important for early embryonic development. Collectively, these findings demonstrate that loss of the zebrafish GlcNAc-1-phosphotransferase γ subunit causes enzyme-specific effects on mannose phosphorylation. The finding that cathepsins are normally modified in gnptg(-/-) embryos is consistent with data from gnptab-deficient zebrafish suggesting these proteases are the key mediators of acute pathogenesis. This work also establishes a valuable new model that can be used to probe the functional relevance of GNPTG mutations in the context of a whole animal.


Asunto(s)
Catepsinas/metabolismo , Manosa/metabolismo , Mucolipidosis/metabolismo , Péptido Hidrolasas/metabolismo , Fosforilación/fisiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Pez Cebra/metabolismo , Animales , Glicósido Hidrolasas/metabolismo , Hidrolasas/metabolismo , Manosafosfatos/metabolismo , Mutación/genética , Oocitos/metabolismo , Fenotipo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Pez Cebra/genética
14.
Mol Ther ; 24(2): 206-216, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26447927

RESUMEN

Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in ß-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII.


Asunto(s)
Enfermedades del Sistema Nervioso Central/terapia , Terapia Genética/métodos , Glucuronidasa/genética , Mucopolisacaridosis VII/terapia , Animales , Animales Recién Nacidos , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Glucuronidasa/líquido cefalorraquídeo , Glicosaminoglicanos/metabolismo , Inyecciones Intravenosas , Inyecciones Espinales , Masculino , Mucopolisacaridosis VII/complicaciones , Mucopolisacaridosis VII/genética , Mucopolisacaridosis VII/metabolismo
15.
J Biol Chem ; 290(5): 3045-56, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25505245

RESUMEN

UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and ß subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αß. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αß patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and ß subunits.


Asunto(s)
Lisosomas/metabolismo , Mucolipidosis/enzimología , Mucolipidosis/genética , Mutación Missense/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Humanos , Mucolipidosis/metabolismo , Pez Cebra
16.
J Am Chem Soc ; 138(36): 11575-11582, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27541995

RESUMEN

Technologies that can visualize, capture, and identify subsets of biomolecules that are not encoded by the genome in the context of healthy and diseased cells will offer unique opportunities to uncover the molecular mechanism of a multitude of physiological and disease processes. We describe here a chemical reporter strategy for labeling of cell surface glycoconjugates that takes advantage of recombinant glycosyltransferases and a corresponding sugar nucleotide functionalized by biotin. The exceptional efficiency of this method, termed one-step selective exoenzymatic labeling, or SEEL, greatly improved the ability to enrich and identify large numbers of tagged glycoproteins by LC-MS/MS. We further demonstrated that this labeling method resulted in far superior enrichment and detection of glycoproteins at the plasma membrane compared to a sulfo-NHS-activated biotinylation or two-step SEEL. This new methodology will make it possible to profile cell surface glycoproteomes with unprecedented sensitivity in the context of physiological and disease states.


Asunto(s)
Biotinilación , Enzimas/metabolismo , Glicoproteínas/metabolismo , Supervivencia Celular , Células HeLa , Humanos , Lisosomas/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Proteómica , Coloración y Etiquetado , Especificidad por Sustrato
17.
Hum Mol Genet ; 23(2): 418-33, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24026681

RESUMEN

'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.


Asunto(s)
Gangliósido G(M3)/biosíntesis , Glucolípidos/metabolismo , Síndromes Neurocutáneos/genética , Sialiltransferasas/genética , Secuencia de Aminoácidos , Animales , Apoptosis , Cromosomas Humanos Par 2 , Secuencia Conservada , Embrión no Mamífero/metabolismo , Exoma , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Variación Genética , Glicoproteínas/metabolismo , Glicosilación , Humanos , Masculino , Datos de Secuencia Molecular , Síndromes Neurocutáneos/metabolismo , Neuronas/metabolismo , Linaje , Polimorfismo de Nucleótido Simple , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Pez Cebra/embriología
18.
Mol Genet Metab ; 117(2): 114-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26454691

RESUMEN

UNLABELLED: Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) fails to completely reverse muscle weakness in Pompe disease. ß2-agonists enhanced ERT by increasing receptor-mediated uptake of rhGAA in skeletal muscles. PURPOSE: To test the hypothesis that a ß-blocker might reduce the efficacy of ERT, because the action of ß-blockers opposes those of ß2-agonists. METHODS: Mice with Pompe disease were treated with propranolol (a ß-blocker) or clenbuterol in combination with ERT, or with ERT alone. RESULTS: Propranolol-treated mice had decreased weight gain (p<0.01), in comparison with clenbuterol-treated mice. Left ventricular mass was decreased (and comparable to wild-type) in ERT only and clenbuterol-treated groups of mice, and unchanged in propranolol-treated mice. GAA activity increased following either clenbuterol or propranolol in skeletal muscles. However, muscle glycogen was reduced only in clenbuterol-treated mice, not in propranolol-treated mice. Cell-based experiments confirmed that propranolol reduces uptake of rhGAA into Pompe fibroblasts and also demonstrated that the drug induces intracellular accumulation of glycoproteins at higher doses. CONCLUSION: Propranolol, a commonly prescribed ß-blocker, reduced weight, increased left ventricular mass and decreased glycogen clearance in skeletal muscle following ERT. ß-Blockers might therefore decrease the efficacy from ERT in patients with Pompe disease.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Propranolol/farmacología , alfa-Glucosidasas/uso terapéutico , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Células Cultivadas , Antagonismo de Drogas , Evaluación Preclínica de Medicamentos , Fibroblastos/metabolismo , Glucógeno/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Humanos , Ratones Noqueados , Propranolol/uso terapéutico , alfa-Glucosidasas/farmacología
19.
Proc Natl Acad Sci U S A ; 110(25): 10246-51, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733939

RESUMEN

UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an α2ß2γ2 heterohexamer that mediates the initial step in the formation of the mannose 6-phosphate recognition signal on lysosomal acid hydrolases. We previously reported that the specificity of the reaction is determined by the ability of the α/ß subunits to recognize a conformation-dependent protein determinant present on the acid hydrolases. We now present evidence that the DNA methyltransferase-associated protein (DMAP) interaction domain of the α subunit functions in this recognition process. First, GST-DMAP pulled down several acid hydrolases, but not nonlysosomal glycoproteins. Second, recombinant GlcNAc-1-phosphotransferase containing a missense mutation in the DMAP interaction domain (Lys732Asn) identified in a patient with mucolipidosis II exhibited full activity toward the simple sugar α-methyl d-mannoside but impaired phosphorylation of acid hydrolases. Finally, unlike the WT enzyme, expression of the K732N mutant in a zebrafish model of mucolipidosis II failed to correct the phenotypic abnormalities. These results indicate that the DMAP interaction domain of the α subunit functions in the selective recognition of acid hydrolase substrates and provides an explanation for the impaired phosphorylation of acid hydrolases in a patient with mucolipidosis II.


Asunto(s)
Anomalías Múltiples/metabolismo , Lisosomas/enzimología , Mucolipidosis/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas de Pez Cebra/metabolismo , Anomalías Múltiples/enzimología , Acetilglucosamina/metabolismo , Animales , Femenino , Células HEK293 , Células HeLa , Humanos , Hidrolasas/metabolismo , Masculino , Manosafosfatos/metabolismo , Ratones , Mucolipidosis/enzimología , Mutagénesis Sitio-Dirigida , Mutación Missense , Fosforilación/fisiología , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
20.
Proc Natl Acad Sci U S A ; 110(25): 10207-12, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733943

RESUMEN

Niemann-Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Azidas/farmacocinética , Proteínas Portadoras/genética , Línea Celular , Colesterol/metabolismo , Dextranos/farmacocinética , Endosomas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Galactosamina/farmacocinética , Glicoconjugados/genética , Glicoconjugados/metabolismo , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Transporte de Proteínas/fisiología , Sialoglicoproteínas/metabolismo , Proteínas de Transporte Vesicular , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda