Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Crit Care ; 28(1): 78, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486211

RESUMEN

BACKGROUND: Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS: A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS: In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS: In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Espectroscopía Infrarroja Corta , Adulto , Humanos , Estudios de Cohortes , Pronóstico , Estudios Retrospectivos , Espectroscopía Infrarroja Corta/métodos , Saturación de Oxígeno , Canadá , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen
2.
Crit Care ; 28(1): 294, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232842

RESUMEN

BACKGROUND: Over the recent decades, continuous multi-modal monitoring of cerebral physiology has gained increasing interest for its potential to help minimize secondary brain injury following moderate-to-severe acute traumatic neural injury (also termed traumatic brain injury; TBI). Despite this heightened interest, there has yet to be a comprehensive evaluation of the effects of derangements in multimodal cerebral physiology on global cerebral physiologic insult burden. In this study, we offer a multi-center descriptive analysis of the associations between deranged cerebral physiology and cerebral physiologic insult burden. METHODS: Using data from the Canadian High-Resolution TBI (CAHR-TBI) Research Collaborative, a total of 369 complete patient datasets were acquired for the purposes of this study. For various cerebral physiologic metrics, patients were trichotomized into low, intermediate, and high cohorts based on mean values. Jonckheere-Terpstra testing was then used to assess for directional relationships between these cerebral physiologic metrics and various measures of cerebral physiologic insult burden. Contour plots were then created to illustrate the impact of preserved vs impaired cerebrovascular reactivity on these relationships. RESULTS: It was found that elevated intracranial pressure (ICP) was associated with more time spent with cerebral perfusion pressure (CPP) < 60 mmHg and more time with impaired cerebrovascular reactivity. Low CPP was associated with more time spent with ICP > 20 or 22 mmHg and more time spent with impaired cerebrovascular reactivity. Elevated cerebrovascular reactivity indices were associated with more time spent with CPP < 60 mmHg as well as ICP > 20 or 22 mmHg. Low brain tissue oxygenation (PbtO2) only demonstrated a significant association with more time spent with CPP < 60 mmHg. Low regional oxygen saturation (rSO2) failed to produce a statistically significant association with any particular measure of cerebral physiologic insult burden. CONCLUSIONS: Mean ICP, CPP and, cerebrovascular reactivity values demonstrate statistically significant associations with global cerebral physiologic insult burden; however, it is uncertain whether measures of oxygen delivery provide any significant insight into such insult burden.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Canadá/epidemiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Circulación Cerebrovascular/fisiología , Presión Intracraneal/fisiología , Anciano
3.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257592

RESUMEN

The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.


Asunto(s)
Presión Intracraneal , Espectroscopía Infrarroja Corta , Humanos , Estudios Retrospectivos , Proyectos de Investigación , Tecnología
4.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474990

RESUMEN

The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting. It focuses on temporally resolved cerebral pressure-flow and oxygen delivery data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volunteers, patients with various conditions, and animal subjects. Methodologies range from traditional statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv. Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees showed promise, especially in ICP prediction. Nonlinear models and multi-input models were prevalent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis, benefiting neurocritical care applications.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Humanos
5.
J Clin Monit Comput ; 38(4): 791-802, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38436898

RESUMEN

PURPOSE: Continuous cerebrovascular reactivity monitoring in both neurocritical and intra-operative care has gained extensive interest in recent years, as it has documented associations with long-term outcomes (in neurocritical care populations) and cognitive outcomes (in operative cohorts). This has sparked further interest into the exploration and evaluation of methods to achieve an optimal cerebrovascular reactivity measure, where the individual patient is exposed to the lowest insult burden of impaired cerebrovascular reactivity. Recent literature has documented, in neural injury populations, the presence of a potential optimal sedation level in neurocritical care, based on the relationship between cerebrovascular reactivity and quantitative depth of sedation (using bispectral index (BIS)) - termed BISopt. The presence of this measure outside of neural injury patients has yet to be proven. METHODS: We explore the relationship between BIS and continuous cerebrovascular reactivity in two cohorts: (A) healthy population undergoing elective spinal surgery under general anesthesia, and (B) healthy volunteer cohort of awake controls. RESULTS: We demonstrate the presence of BISopt in the general anesthesia population (96% of patients), and its absence in awake controls, providing preliminary validation of its existence outside of neural injury populations. Furthermore, we found BIS to be sufficiently separate from overall systemic blood pressure, this indicates that they impact different pathophysiological phenomena to mediate cerebrovascular reactivity. CONCLUSIONS: Findings here carry implications for the adaptation of the individualized physiologic BISopt concept to non-neural injury populations, both within critical care and the operative theater. However, this work is currently exploratory, and future work is required.


Asunto(s)
Anestesia General , Monitores de Conciencia , Electroencefalografía , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Electroencefalografía/métodos , Circulación Cerebrovascular , Voluntarios Sanos , Presión Sanguínea , Monitoreo Intraoperatorio/métodos , Anciano , Vigilia , Reproducibilidad de los Resultados , Cuidados Críticos/métodos , Adulto Joven
6.
Acta Neurochir (Wien) ; 165(7): 1987-2000, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37067617

RESUMEN

BACKGROUND: Current moderate/severe traumatic brain injury (TBI) guidelines suggest the use of an intracranial pressure (ICP) treatment threshold of 20 mmHg or 22 mmHg. Over the past decade, the use of various cerebral physiology monitoring devices has been incorporated into neurocritical care practice and termed "multimodal monitoring." Such modalities include those that monitor systemic hemodynamics, systemic and brain oxygenation, cerebral blood flow (CBF), cerebral autoregulation, electrophysiology, and cerebral metabolism. Given that the relationship between ICP and outcomes is not yet entirely understood, a comprehensive review of the literature on the associations between ICP thresholds and multimodal monitoring is still needed. METHODS: We conducted a scoping review of the literature for studies that present an objective statistical association between ICP above/below threshold and any multimodal monitoring variable. MEDLINE, BIOSIS, Cochrane library, EMBASE, Global Health, and SCOPUS were searched from inception to July 2022 for relevant articles. Full-length, peer-reviewed, original works with a sample size of ≥50 moderate-severe TBI patients were included in this study. RESULTS: A total of 13 articles were deemed eligible for final inclusion. The included articles were significantly heterogenous in terms of their designs, demographics, and results, making it difficult to draw any definitive conclusions. No literature describing the association between guideline-based ICP thresholds and measures of brain electrophysiology, cerebral metabolism, or direct metrics of CBF was found. CONCLUSION: There is currently little literature that presents objective statistical associations between ICP thresholds and multimodal monitoring physiology. However, overall, the literature indicates that having ICP above guideline based thresholds is associated with increased blood pressure, increased cardiac decoupling, reduced parenchymal brain oxygen tension, and impaired cerebral autoregulation, with no association with CBF velocity within the therapeutic range of ICP. There was insufficient literature to comment on other multimodal monitoring measures.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Presión Intracraneal/fisiología , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Encefálicas/complicaciones , Hemodinámica , Homeostasis/fisiología , Circulación Cerebrovascular/fisiología , Monitoreo Fisiológico/métodos
7.
Acta Neurochir (Wien) ; 164(12): 3107-3118, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36156746

RESUMEN

BACKGROUND: Impaired cerebrovascular reactivity following moderate/severe traumatic brain injury (TBI) has emerged as a key potential driver of morbidity and mortality. However, the major contributions to the literature so far have been solely focused on single point measures of long-term outcome. Therefore, it remains unknown whether cerebrovascular reactivity impairment, during the acute phase of TBI, is associated with failure to improve in outcome across time. METHODS: Cerebrovascular reactivity was measured using three intracranial pressure-based surrogate metrics. For each patient, % time spent above various literature-defined thresholds was calculated. Patients were dichotomized based on outcome transition into Improved vs Not Improved between 1 and 3 months, 3 and 6 months, and 1 and 6 months, based on the Glasgow Outcome Scale-Extended (GOSE). Univariate and multivariable logistic regression analyses were performed, adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. RESULTS: Seventy-eight patients from the Winnipeg Acute TBI Database were included in this study. On univariate logistic regression analysis, higher % time with cerebrovascular reactivity metrics above clinically defined thresholds was associated with a lack of clinical improvement between 1 and 3 months and 1 and 6 months post injury (p < 0.05). These relationships held true on multivariable logistic regression analysis. CONCLUSION: Our study demonstrates that impaired cerebrovascular reactivity, during the acute phase of TBI, is associated with failure to improve clinically over time. These preliminary findings highlight the significance that cerebrovascular reactivity monitoring carries in outcome recovery association in moderate/severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Adulto , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Escala de Consecuencias de Glasgow , Presión Intracraneal , Benchmarking
8.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671733

RESUMEN

Near-infrared spectroscopy (NIRS) regional cerebral oxygen saturation (rSO2)-based cerebrovascular reactivity (CVR) monitoring has enabled entirely non-invasive, continuous monitoring during both acute and long-term phases of care. To date, long-term post-injury CVR has not been properly characterized after acute traumatic neural injury, also known as traumatic brain injury (TBI). This study aims to compare CVR in those recovering from moderate-to-severe TBI with a healthy control group. A total of 101 heathy subjects were recruited for this study, along with 29 TBI patients. In the healthy cohort, the arterial blood pressure variant of the cerebral oxygen index (COx_a) was not statistically different between males and females or in the dominant and non-dominant hemispheres. In the TBI cohort, COx_a was not statistically different between the first and last available follow-up or by the side of cranial surgery. Surprisingly, CVR, as measured by COx_a, was statistically better in those recovering from TBI than those in the healthy cohort. In this prospective cohort study, CVR, as measured by NIRS-based methods, was found to be more active in those recovering from TBI than in the healthy cohort. This study may indicate that in individuals that survive TBI, CVR may be enhanced as a neuroprotective measure.

9.
Physiol Meas ; 45(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38776946

RESUMEN

Objective.Continuous monitoring of cerebrospinal compliance (CC)/cerebrospinal compensatory reserve (CCR) is crucial for timely interventions and preventing more substantial deterioration in the context of acute neural injury, as it enables the early detection of abnormalities in intracranial pressure (ICP). However, to date, the literature on continuous CC/CCR monitoring is scattered and occasionally challenging to consolidate.Approach.We subsequently conducted a systematic scoping review of the human literature to highlight the available continuous CC/CCR monitoring methods.Main results.This systematic review incorporated a total number of 76 studies, covering diverse patient types and focusing on three primary continuous CC or CCR monitoring metrics and methods-Moving Pearson's correlation between ICP pulse amplitude waveform and ICP, referred to as RAP, the Spiegelberg Compliance Monitor, changes in cerebral blood flow velocity with respect to the alternation of ICP measured through transcranial doppler (TCD), changes in centroid metric, high frequency centroid (HFC) or higher harmonics centroid (HHC), and the P2/P1 ratio which are the distinct peaks of ICP pulse wave. The majority of the studies in this review encompassed RAP metric analysis (n= 43), followed by Spiegelberg Compliance Monitor (n= 11), TCD studies (n= 9), studies on the HFC/HHC (n= 5), and studies on the P2/P1 ratio studies (n= 6). These studies predominantly involved acute traumatic neural injury (i.e. Traumatic Brain Injury) patients and those with hydrocephalus. RAP is the most extensively studied of the five focused methods and exhibits diverse applications. However, most papers lack clarification on its clinical applicability, a circumstance that is similarly observed for the other methods.Significance.Future directions involve exploring RAP patterns and identifying characteristics and artifacts, investigating neuroimaging correlations with continuous CC/CCR and integrating machine learning, holding promise for simplifying CC/CCR determination. These approaches should aim to enhance the precision and accuracy of the metric, making it applicable in clinical practice.


Asunto(s)
Presión Intracraneal , Humanos , Monitoreo Fisiológico/métodos , Presión Intracraneal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Circulación Cerebrovascular/fisiología , Adaptabilidad
10.
Neurotrauma Rep ; 5(1): 483-496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036433

RESUMEN

Cerebrovascular pressure reactivity plays a key role in maintaining constant cerebral blood flow. Unfortunately, this mechanism is often impaired in acute traumatic neural injury states, exposing the already injured brain to further pressure-passive insults. While there has been much work on the association between impaired cerebrovascular reactivity following moderate/severe traumatic brain injury (TBI) and worse long-term outcomes, there is yet to be a comprehensive review on the association between cerebrovascular pressure reactivity and intracranial pressure (ICP) extremes. Therefore, we conducted a systematic review of the literature for all studies presenting a quantifiable statistical association between a continuous measure of cerebrovascular pressure reactivity and ICP in a human TBI cohort. The methodology described in the Cochrane Handbook for Systematic Reviews was used. BIOSIS, Cochrane Library, EMBASE, Global Health, MEDLINE, and SCOPUS were all searched from their inceptions to March of 2023 for relevant articles. Full-length original works with a sample size of ≥10 patients with moderate/severe TBI were included in this review. Data were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A total of 16 articles were included in this review. Studies varied in population characteristics and statistical tests used. Five studies looked at transcranial Doppler-based indices and 13 looked at ICP-based indices. All but two studies were able to present a statistically significant association between cerebrovascular pressure reactivity and ICP. Based on the findings of this review, impaired reactivity seems to be associated with elevated ICP and reduced ICP waveform complexity. This relationship may allow for the calculation of patient-specific ICP thresholds, past which cerebrovascular reactivity becomes persistently deranged. However, further work is required to better understand this relationship and improve algorithmic derivation of such individualized ICP thresholds.

11.
Comput Biol Med ; 178: 108766, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905893

RESUMEN

Traumatic brain injury (TBI) poses a significant global public health challenge necessitating a profound understanding of cerebral physiology. The dynamic nature of TBI demands sophisticated methodologies for modeling and predicting cerebral signals to unravel intricate pathophysiology and predict secondary injury mechanisms prior to their occurrence. In this comprehensive scoping review, we focus specifically on multivariate cerebral physiologic signal analysis in the context of multi-modal monitoring (MMM) in TBI, exploring a range of techniques including multivariate statistical time-series models and machine learning algorithms. Conducting a comprehensive search across databases yielded 7 studies for evaluation, encompassing diverse cerebral physiologic signals and parameters from TBI patients. Among these, five studies concentrated on modeling cerebral physiologic signals using statistical time-series models, while the remaining two studies primarily delved into intracranial pressure (ICP) prediction through machine learning models. Autoregressive models were predominantly utilized in the modeling studies. In the context of prediction studies, logistic regression and Gaussian processes (GP) emerged as the predominant choice in both research endeavors, with their performance being evaluated against each other in one study and other models such as random forest, and decision tree in the other study. Notably among these models, random forest model, an ensemble learning approach, demonstrated superior performance across various metrics. Additionally, a notable gap was identified concerning the absence of studies focusing on prediction for multivariate outcomes. This review addresses existing knowledge gaps and sets the stage for future research in advancing cerebral physiologic signal analysis for neurocritical care improvement.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Aprendizaje Automático , Humanos , Lesiones Traumáticas del Encéfalo/fisiopatología , Análisis Multivariante , Encéfalo/fisiopatología , Procesamiento de Señales Asistido por Computador
12.
Sci Rep ; 14(1): 20737, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237683

RESUMEN

Global outcomes have been reported to be associated with cerebrovascular reactivity (CVR) in the acute phase following moderate and severe traumatic brain injury (TBI). The association of CVR in the acute and chronic phase of injury with patient-reported health-related quality of life metrics (HRQOL) metrics has never been explored. The aim of this study is to examine the association of CVR, as measured by the cerebral oxygen indices (COx and COx_a), in the acute and chronic phase following moderate and severe TBI, with patient reported HRQOL. In this prospective cohort study, performed in a Canadian quaternary care center, the association between continuous acute and chronic phase CVR with patient reported HRQOL outcomes following moderate and severe TBI was examined. The main outcomes of interest of this study were validated measures of patient-reported HRQOL over various domains as measured by both the 12-Item Short-Form Health Survey (SF-12) and a Quality of Life after Brain Injury (QOLIBRI) questionnaire. In the 29 subjects of this cohort, acute phase CVR was found to be significantly more active in those with a favorable Mental Component Summary (MCS) scores of the SF-12 at early follow-up when measured by COx (-0.015 [IQR: -0.067 to 0.032] vs 0.040 [IQR: 0.019 to 0.137] for Favorable first MCS vs Unfavorable respectively; Mann-Whitney U test p-value = 0.046) and COx_a (0.038 [IQR: 0.009 to 0.062] vs 0.112 [IQR: 0.065 to 0.167] for Favorable first MCS vs Unfavorable respectively; Mann-Whitney U test p-value = 0.014). Further, multivariable logistic regression analysis found acute phase COx and COx_a to improve model performance when predicting favorable versus unfavorable early MCS scores over established parameters such as age and measures of injury severity. Associations between outcomes and chronic phase CVR were limited, potentially due to short recording periods. This is the first ever pilot study to identify a relationship between acute phase CVR following moderate-to-severe TBI with mental and cognitive outcomes as experienced by patients. Given the small cohort, these findings will need to be confirmed in a larger multicenter study. This highlights the need for additional examination of the role dysfunctional CVR may play in mental and cognitive outcomes, as well as patient-reported outcomes more generally following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Calidad de Vida , Humanos , Lesiones Traumáticas del Encéfalo/psicología , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Circulación Cerebrovascular , Encuestas y Cuestionarios , Canadá
13.
J Neurotrauma ; 41(7-8): 910-923, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37861325

RESUMEN

Current neurointensive care guidelines recommend intracranial pressure (ICP) and cerebral perfusion pressure (CPP) centered management for moderate-severe traumatic brain injury (TBI) because of their demonstrated associations with patient outcome. Cerebrovascular reactivity metrics, such as the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC index, have also demonstrated significant prognostic capabilities with regard to outcome. However, critical thresholds for cerebrovascular reactivity indices have only been identified in two studies conducted at the same center. In this study, we aim to determine the critical thresholds of these metrics by leveraging a unique multi-center database. The study included a total of 354 patients from the CAnadian High-Resolution TBI (CAHR-TBI) Research Collaborative. Based on 6-month Glasgow Outcome Scores, patients were dichotomized into alive versus dead and favorable versus unfavorable. Chi-square values were then computed for incrementally increasing values of each physiological parameter of interest against outcome. The values that generated the greatest chi-squares for each parameter were considered to be the thresholds with the greatest outcome discriminatory capacity. To confirm that the identified thresholds provide prognostic utility, univariate and multivariable logistical regression analyses were performed adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. Through the chi-square analysis, a lower limit CPP threshold of 60 mm Hg and ICP thresholds of 18 mm Hg and 22 mm Hg were identified for both survival and favorable outcome predictions. For the cerebrovascular reactivity metrics, different thresholds were identified for the two outcome dichotomizations. For survival prediction, thresholds of 0.35, 0.25, and 0 were identified for PRx, PAx, and RAC, respectively. For favorable outcome prediction, thresholds of 0.325, 0.20, and 0.05 were found. Univariate logistical regression analysis demonstrated that the time spent above/below thresholds were associated with outcome. Further, multivariable logistical regression analysis found that percent time above/below the identified thresholds added additional variance to the IMPACT core model for predicting both survival and favorable outcome. In this study, we were able to validate the results of the previous two works as well as to reaffirm the ICP and CPP guidelines from the Brain Trauma Foundation (BTF) and the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Humanos , Presión Intracraneal/fisiología , Circulación Cerebrovascular/fisiología , Canadá , Frecuencia Cardíaca , Estudios Retrospectivos
14.
Intensive Care Med Exp ; 11(1): 57, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635181

RESUMEN

BACKGROUND: Cerebrovascular reactivity has been identified as a key contributor to secondary injury following traumatic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spectroscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning clustering techniques and multivariate time-series analysis. METHODS: High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregressive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arterial blood pressure (ΔABP) was also examined for similarities. RESULTS: A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through agglomerative hierarchical clustering and principal component analysis, there was higher order clustering between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV. CONCLUSIONS: rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strengthens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring is not feasible.

15.
Methods Protoc ; 6(3)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368002

RESUMEN

The ability of cerebral vessels to maintain a fairly constant cerebral blood flow is referred to as cerebral autoregulation (CA). Using near-infrared spectroscopy (NIRS) paired with arterial blood pressure (ABP) monitoring, continuous CA can be assessed non-invasively. Recent advances in NIRS technology can help improve the understanding of continuously assessed CA in humans with high spatial and temporal resolutions. We describe a study protocol for creating a new wearable and portable imaging system that derives CA maps of the entire brain with high sampling rates at each point. The first objective is to evaluate the CA mapping system's performance during various perturbations using a block-trial design in 50 healthy volunteers. The second objective is to explore the impact of age and sex on regional disparities in CA using static recording and perturbation testing in 200 healthy volunteers. Using entirely non-invasive NIRS and ABP systems, we hope to prove the feasibility of deriving CA maps of the entire brain with high spatial and temporal resolutions. The development of this imaging system could potentially revolutionize the way we monitor brain physiology in humans since it would allow for an entirely non-invasive continuous assessment of regional differences in CA and improve our understanding of the impact of the aging process on cerebral vessel function.

16.
Neurotrauma Rep ; 4(1): 478-494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636334

RESUMEN

Since its introduction in the 1960s, intracranial pressure (ICP) monitoring has become an indispensable tool in neurocritical care practice and a key component of the management of moderate/severe traumatic brain injury (TBI). The primary utility of ICP monitoring is to guide therapeutic interventions aimed at maintaining physiological ICP and preventing intracranial hypertension. The rationale for such ICP maintenance is to prevent secondary brain injury arising from brain herniation and inadequate cerebral blood flow. There exists a large body of evidence indicating that elevated ICP is associated with mortality and that aggressive ICP control protocols improve outcomes in severe TBI patients. Therefore, current management guidelines recommend a cerebral perfusion pressure (CPP) target range of 60-70 mm Hg and an ICP threshold of >20 or >22 mm Hg, beyond which therapeutic intervention should be initiated. Though our ability to achieve these thresholds has drastically improved over the past decades, there has been little to no change in the mortality and morbidity associated with moderate-severe TBI. This is a result of the "one treatment fits all" dogma of current guideline-based care that fails to take individual phenotype into account. The way forward in moderate-severe TBI care is through the development of continuously derived individualized ICP thresholds. This narrative review covers the topic of ICP monitoring in TBI care, including historical context/achievements, current monitoring technologies and indications, treatment methods, associations with patient outcome and multi-modal cerebral physiology, present controversies surrounding treatment thresholds, and future perspectives on personalized approaches to ICP-directed therapy.

17.
Front Physiol ; 14: 1124268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755788

RESUMEN

Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF) fairly constant over a wide range of arterial blood pressure is referred to as cerebral autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this process, which maintains CBF through constriction and dilation of cerebral vessels. Traditionally CA has been assessed statistically, limited by large, immobile, and costly neuroimaging platforms. However, with recent technology advancement, dynamic autoregulation assessment is able to provide more detailed information on the evolution of CA over long periods of time with continuous assessment. Yet, to date, such continuous assessments have been hampered by low temporal and spatial resolution systems, that are typically reliant on invasive point estimations of pulsatile CBF or cerebral blood volume using commercially available technology. Methods: Using a combination of multi-channel functional near-infrared spectroscopy and non-invasive arterial blood pressure devices, we were able to create a system that visualizes CA metrics by converting them to heat maps drawn on a template of human brain. Results: The custom Python heat map module works in "offline" mode to visually portray the CA index per channel with the use of colourmap. The module was tested on two different mapping grids, 8 channel and 24 channel, using data from two separate recordings and the Python heat map module was able read the CA indices file and represent the data visually at a preselected rate of 10 s. Conclusion: The generation of the heat maps are entirely non-invasive, with high temporal and spatial resolution by leveraging the recent advances in NIRS technology along with niABP. The CA mapping system is in its initial stage and development plans are ready to transform it from "offline" to real-time heat map generation.

18.
Intensive Care Med Exp ; 11(1): 30, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246179

RESUMEN

BACKGROUND: Although vasopressor and sedative agents are commonly used within the intensive care unit to mediate systemic and cerebral physiology, the full impact such agents have on cerebrovascular reactivity remains unclear. Using a prospectively maintained database of high-resolution critical care and physiology, the time-series relationship between vasopressor/sedative administration, and cerebrovascular reactivity was interrogated. Cerebrovascular reactivity was assessed through intracranial pressure and near infrared spectroscopy measures. Using these derived measures, the relationship between hourly dose of medication and hourly index values could be evaluated. The individual medication dose change and their corresponding physiological response was compared. Given the high number of doses of propofol and norepinephrine, a latent profile analysis was used to identify any underlying demographic or variable relationships. Finally, using time-series methodologies of Granger causality and vector impulse response functions, the relationships between the cerebrovascular reactivity derived variables were compared. RESULTS: From this retrospective observational study of 103 TBI patients, the evaluation between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies was completed. The assessment of the physiology pre/post infusion agent change resulted in similar overall values (Wilcoxon signed-ranked p value > 0.05). Time series methodologies demonstrated that the basic physiological relationships were identical before and after an infusion agent was changed (Granger causality demonstrated the same directional impact in over 95% of the moments, with response function being graphically identical). CONCLUSIONS: This study suggests that overall, there was a limited association between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies including that of cerebrovascular reactivity. Thus, current regimens of administered sedative and vasopressor agents appear to have little to no impact on cerebrovascular reactivity in TBI.

19.
Physiol Meas ; 44(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37336236

RESUMEN

Objective: Cerebral blood vessels maintaining relatively constant cerebral blood flow (CBF) over wide range of systemic arterial blood pressure (ABP) is referred to as cerebral autoregulation (CA). Impairments in CA expose the brain to pressure-passive flow states leading to hypoperfusion and hyperperfusion. Cerebrovascular reactivity (CVR) metrics refer to surrogate metrics of pressure-based CA that evaluate the relationship between slow vasogenic fluctuations in cerebral perfusion pressure/ABP and a surrogate for pulsatile CBF/cerebral blood volume.Approach: We performed a systematically conducted scoping review of all available human literature examining the association between continuous CVR between more than one brain region/channel using the same CVR index.Main Results: In all the included 22 articles, only handful of transcranial doppler (TCD) and near-infrared spectroscopy (NIRS) based metrics were calculated for only two brain regions/channels. These metrics found no difference between left and right sides in healthy volunteer, cardiac surgery, and intracranial hemorrhage patient studies. In contrast, significant differences were reported in endarterectomy, and subarachnoid hemorrhage studies, while varying results were found regarding regional disparity in stroke, traumatic brain injury, and multiple population studies.Significance: Further research is required to evaluate regional disparity using NIRS-based indices and to understand if NIRS-based indices provide better regional disparity information than TCD-based indices.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hemorragia Subaracnoidea , Humanos , Presión Arterial/fisiología , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Ultrasonografía Doppler Transcraneal/métodos
20.
Neurotrauma Rep ; 4(1): 307-317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187506

RESUMEN

Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda