RESUMEN
As large-scale outdoor production cannot be done in complete containment, cultures are (more) open for bacteria, which may affect the productivity and stability of the algae production process. We investigated the bacterial diversity in two indoor reactors and four pilot-scale outdoor reactors for the production of Nannochloropsis sp. CCAP211/78 spanning four months of operation from July to October. Illumina sequencing of 16S rRNA gene amplicons demonstrated that a wide variety of bacteria were present in all reactor types, with predominance of Bacteroidetes and Alphaproteobacteria. Bacterial communities were significantly different between all reactor types (except between the horizontal tubular reactor and the vertical tubular reactor) and also between runs in each reactor. Bacteria common to the majority of samples included one member of the Saprospiraceae family and one of the NS11-12_marine group (both Bacteroidetes). Hierarchical clustering analysis revealed two phases during the cultivation period separated by a major shift in bacterial community composition in the horizontal tubular reactor, the vertical tubular reactor and the raceway pond with a strong decrease of the Saprospiraceae and NS11-12_marine group that initially dominated the bacterial communities. Furthermore, we observed a less consistent pattern of bacterial taxa appearing in different reactors and runs, most of which belonging to the classes Deltaproteobacteria and Flavobacteriia. In addition, canonical correspondence analysis showed that the bacterial community composition was significantly correlated with the nitrate concentration. This study contributes to our understanding of bacterial diversity and composition in different types of outdoor reactors exposed to a range of dynamic biotic and abiotic factors. Key points ⢠Reactor types had significantly different bacterial communities except HT and VT ⢠The inoculum source and physiochemical factors together affect bacterial community ⢠The bacterial family Saprospiraceae is positively correlated to microalgal growth.
Asunto(s)
Microalgas , Estramenopilos , Bacterias/genética , Reactores Biológicos/microbiología , Fotobiorreactores , ARN Ribosómico 16S/genética , Estramenopilos/genéticaRESUMEN
In this study, we used 16S rRNA gene amplicon sequencing to investigate prokaryotic community composition of the Caribbean sponges Xestospongia muta and Agelas sventres from three depth ranges: < 30 m (shallow), 30-60 m (upper mesophotic), and 60-90 m (lower mesophotic). The prokaryotic community in shallow samples of X. muta was enriched in Cyanobacteria, Chloroflexota, and Crenarchaeota compared to samples from mesophotic depths, while mesophotic samples of X. muta were enriched in Acidobacteriota. For A. sventres, relative abundance of Acidobacteriota, Chloroflexota, and Gammaproteobacteria was higher in shallow samples, while Proteobacteria and Crenarchaeota were enriched in mesophotic A. sventres samples. Antimicrobial activity was evaluated by screening crude extracts of sponges against a set of Gram-positive and Gram-negative bacteria, a yeast, and an oomycete. Antibacterial activities from crude extracts of shallow sponge individuals were generally higher than observed from mesophotic individuals, that showed limited or no antibacterial activities. Conversely, the highest anti-oomycete activity was found from crude extracts of X. muta individuals from lower mesophotic depth, but without a clear pattern across the depth gradient. These results indicate that sponge-associated prokaryotic communities and the antimicrobial activity of sponges change within species across a depth gradient from shallow to mesophotic depth.
Asunto(s)
Antibacterianos , Chloroflexi , Chloroflexi/genética , Mezclas Complejas , Bacterias Gramnegativas , Bacterias Grampositivas/genética , Humanos , ARN Ribosómico 16S/genéticaRESUMEN
Recent reviews have reinforced sponge-associated bacteria as a valuable source of structurally diverse secondary metabolites with potent biological properties, which makes these microbial communities promising sources of new drug candidates. However, the overall diversity of secondary metabolite biosynthetic potential present in bacteria is difficult to access due to the fact that the majority of bacteria are not readily cultured in the laboratory. Thus, use of cultivation-independent approaches may allow accessing "silent" and "cryptic" secondary metabolite biosynthetic gene clusters present in bacteria that cannot yet be cultured. In the present study, we investigated the diversity of secondary metabolite biosynthetic gene clusters (BGCs) in metagenomes of bacterial communities associated with three sponge species: Clathria reinwardti, Rhabdastrella globostellata, and Spheciospongia sp. The results reveal that the three metagenomes contain a high number of predicted BGCs, ranging from 282 to 463 BGCs per metagenome. The types of BGCs were diverse and represented 12 different cluster types. Clusters predicted to encode fatty acid synthases and polyketide synthases (PKS) were the most dominant BGC types, followed by clusters encoding synthesis of terpenes and bacteriocins. Based on BGC sequence similarity analysis, 363 gene cluster families (GCFs) were identified. Interestingly, no GCFs were assigned to pathways responsible for the production of known compounds, implying that the clusters detected might be responsible for production of several novel compounds. The KS gene sequences from PKS clusters were used to predict the taxonomic origin of the clusters involved. The KS sequences were related to 12 bacterial phyla with Actinobacteria, Proteobacteria, and Firmicutes as the most predominant. At the genus level, the KSs were most related to those found in the genera Mycolicibacterium, Mycobacterium, Burkholderia, and Streptomyces. Phylogenetic analysis of KS sequences resulted in detection of two known 'sponge-specific' BGCs, i.e., SupA and SwfA, as well as a new 'sponge-specific' cluster related to fatty acid synthesis in the phylum Candidatus Poribacteria and composed only by KS sequences of the three sponge-associated bacterial communities assessed here.
Asunto(s)
Actinobacteria , Poríferos , Actinobacteria/genética , Bacterias/genética , Vías Biosintéticas/genética , Familia de Multigenes/genética , Filogenia , Poríferos/microbiología , AnimalesRESUMEN
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
RESUMEN
The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan-bacteria symbiosis.
Asunto(s)
Metagenómica , Poríferos , Animales , Bacterias/genética , Humanos , Metagenoma , Filogenia , SimbiosisRESUMEN
Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.
Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Metagenoma , Microbiota , Poríferos/microbiología , ARN Ribosómico 16S/análisis , Simbiosis , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Filogenia , Poríferos/genética , Poríferos/crecimiento & desarrolloRESUMEN
In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.
RESUMEN
Marine sponges host dense, diverse, and species-specific microbial communities around the globe; however, most of the current knowledge is restricted to species from tropical and temperate waters. Only recently, some studies have assessed the microbiome of a few Antarctic sponges; however, contrary to low mid-latitude sponges, the knowledge about temporal (stability) patterns in the bacterial communities of Antarctic sponges is absent. Here, we studied the temporal patterns of bacterial communities in the Antarctic sponges Mycale (Oxymycale) acerata, Isodictya sp., Hymeniacidon torquata, and Tedania (Tedaniopsis) wellsae that were tagged in situ and monitored during three austral summers over a 24-month period. By using amplicon sequencing of the bacterial 16S rRNA gene we found that the microbiome differed between species. In general, bacterial communities were dominated by gammaproteobacterial OTUs; however, M. acerata showed the most distinct pattern, being dominated by a single betaproteobacterial OTU. The analysis at OTU level (defined at 97% sequence similarity) showed a highly stable bacterial community through time, despite the abnormal seawater temperatures (reaching 3°C) and rates of temperature increase of 0.15°C day-1 recorded in austral summer 2017. Sponges were characterized by a small core bacterial community that accounted for a high percentage of the abundance. Overall, no consistent changes in core OTU abundance were recorded for all studied species, confirming a high temporal stability of the microbiome. In addition, predicted functional pathway profiles showed that the most abundant pathways among all sponges belonged mostly to metabolism pathway groups (e.g., amino acid, carbohydrate, energy, and nucleotide). The predicted functional pathway patterns differed among the four sponge species. However, no clear temporal differences were detected supporting what was found in terms of the relatively stable composition of the bacterial communities.
RESUMEN
Sponges are one of the most dominant organisms in marine ecosystems. One reason for their success is their association with microorganisms that are besides the host itself responsible for the chemical defence. Sponge abundances have been increasing on coral reefs in the Western Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts on coral reefs. However, there is a paucity of information on chemical ecology of sponges from the WIO and their prokaryotic community composition. We used a combination of Illumina sequencing and a predictive metagenomic analysis to (i) assess the prokaryotic community composition of sponges from Zanzibar, (ii) predict the presence of KEGG metabolic pathways responsible for bioactive compound production and (iii) relate their presence to the degree of observed chemical defence in their respective sponge host. We found that sponges from Zanzibar host diverse prokaryotic communities that are host species-specific. Sponge-species and respective specimens that showed strong chemical defences in previous studies were also predicted to be highly enriched in various pathways responsible for secondary metabolite production. Hence, the combined sequencing and predictive metagenomic approach proved to be a useful indicator for the metabolic potential of sponge holobionts.
Asunto(s)
Microbiota , Poríferos/microbiología , Células Procariotas/clasificación , Animales , Productos Biológicos/metabolismo , Arrecifes de Coral , Océano Índico , Microbiota/genética , Poríferos/química , Poríferos/clasificación , Células Procariotas/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Especificidad de la Especie , TanzaníaRESUMEN
Botryococcus braunii (Chlorophyta) is a green microalga known for producing hydrocarbons and exopolysaccharides (EPS). Improving the biomass productivity of B. braunii and hence, the productivity of the hydrocarbons and of the EPS, will make B. braunii more attractive for industries. Microalgae usually cohabit with bacteria which leads to the formation of species-specific communities with environmental and biological advantages. Bacteria have been found and identified with a few B. braunii strains, but little is known about the bacterial community across the different strains. A better knowledge of the bacterial community of B. braunii will help to optimize the biomass productivity, hydrocarbons, and EPS accumulation. To better understand the bacterial community diversity of B. braunii, we screened 12 strains from culture collections. Using 16S rRNA gene analysis by MiSeq we described the bacterial diversity across 12 B. braunii strains and identified possible shared communities. We found three bacterial families common to all strains: Rhizobiaceae, Bradyrhizobiaceae, and Comamonadaceae. Additionally, the results also suggest that each strain has its own specific bacteria that may be the result of long-term isolated culture.
RESUMEN
Marine sponges are benthic 'filter-feeding' invertebrates that can host dense and diverse bacterial, archaeal and eukaryotic communities. Due to the finding of several genes encoding symbiosis factors, such as adhesins, ankyrin repeats and tetratricopeptide repeats, the candidate phylum 'Poribacteria' is considered as a promising model microorganism for studying the origin of host-symbiont interactions in sponges. However, relatively little is known about its global diversity and phylogenetic distribution among different sponge hosts. Therefore, in this study we investigated phylogenetic relationships among poribacterial phylotypes and generated a phylogenetic network to examine the distribution and intraspecific diversity of the phylotypes between phylogenetically divergent host-sponges at a global scale. For this study 361 poribacterial 16S rRNA gene sequences obtained by Sanger sequencing from 15 different countries and 8 marine regions were gathered. We could demonstrate that the candidate phylum 'Poribacteria' is composed of diverse phylotypes, which are distributed among a wide range of phylogenetically divergent sponge hosts. The current phylogenetic analyses found neither conclusive evidence for co-speciation with its hosts, nor biogeographical correlation. Moreover, we identified a novel poribacterial clade, which might represent a link between the previously established four 'Poribacteria' clades.
Asunto(s)
Bacterias/clasificación , Filogenia , Poríferos/microbiología , Animales , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Poríferos/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Sponge-associated prokaryotic diversity has been studied from a wide range of marine environments across the globe. However, for certain regions, e.g., Vietnam, Thailand, Cambodia, and Singapore, an overview of the sponge-associated prokaryotic communities is still pending. In this study we characterized the prokaryotic communities from 27 specimens, comprising 18 marine sponge species, sampled from the central coastal region of Vietnam. Illumina MiSeq sequencing of 16S ribosomal RNA (rRNA) gene fragments was used to investigate sponge-associated bacterial and archaeal diversity. Overall, 14 bacterial phyla and one archaeal phylum were identified among all 27 samples. The phylum Proteobacteria was present in all sponges and the most prevalent phylum in 15 out of 18 sponge species, albeit with pronounced differences at the class level. In contrast, Chloroflexi was the most abundant phylum in Halichondria sp., whereas Spirastrella sp. and Dactylospongia sp. were dominated by Actinobacteria. Several bacterial phyla such as Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Gemmatimonadetes, and Nitrospirae were found in two-thirds of the sponge species. Moreover, the phylum Thaumarchaeota (Archaea), which is known to comprise nitrifying archaea, was highly abundant among the majority of the 18 investigated sponge species. Altogether, this study demonstrates that the diversity of prokaryotic communities associated with Vietnamese sponges is comparable to sponge-prokaryotic assemblages from well-documented regions. Furthermore, the phylogenetically divergent sponges hosted species-specific prokaryotic communities, thus demonstrating the influence of host identity on the composition and diversity of the associated communities. Therefore, this high-throughput 16S rRNA gene amplicon analysis of Vietnamese sponge-prokaryotic communities provides a foundation for future studies on sponge symbiont function and sponge-derived bioactive compounds from this region.
RESUMEN
Sponges (Porifera) are abundant and diverse members of benthic filter feeding communities in most marine ecosystems, from the deep sea to tropical reefs. A characteristic feature is the associated dense and diverse prokaryotic community present within the sponge mesohyl. Previous molecular genetic studies revealed the importance of host identity for the community composition of the sponge-associated microbiota. However, little is known whether sponge host-specific prokaryotic community patterns observed at 97% 16S rRNA gene sequence similarity are consistent at high taxonomic ranks (from genus to phylum level). In the present study, we investigated the prokaryotic community structure and variation of 24 sponge specimens (seven taxa) and three seawater samples from Sweden. Results show that the resemblance of prokaryotic communities at different taxonomic ranks is consistent with patterns present at 97% operational taxonomic unit level.
Asunto(s)
Bacterias/genética , ADN Bacteriano/genética , Microbiota/genética , Filogenia , Poríferos/microbiología , Animales , Océano Atlántico , Bacterias/clasificación , Biodiversidad , Código de Barras del ADN Taxonómico , Células Procariotas/clasificación , ARN Ribosómico 16S/genética , Agua de Mar , Análisis de Secuencia de ADN , Suecia , Simbiosis/fisiologíaRESUMEN
The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n = 19) and LMA (n = 17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered "HMA indicators" and "LMA indicators." Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n = 44) and LMA (n = 74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.
RESUMEN
Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.
Asunto(s)
Microbiota , Poríferos/microbiología , Animales , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.
RESUMEN
Ascidians have yielded a wide variety of bioactive natural products. The colonial ascidian Eudistoma toealensis from Micronesia has been identified as the source of a series of staurosporine derivatives, though the exact origin of these derivatives is still unknown. To identify known staurosporine-producing microbes associated with E. toealensis, we analyzed with 16S rRNA gene tag pyrosequencing the overall bacterial community and focused on potential symbiotic bacteria already known from other ascidians or other marine hosts, such as sponges. The described microbiota was one of very high diversity, comprising 43 phyla: two from archaea, 34 described bacterial phyla, and seven candidate bacterial phyla. Many bacteria, which are renowned community members of other ascidians and marine holobionts, such as sponges and corals, were also part of the E. toealensis microbial community. Furthermore, two known producers of indolocarbazoles, Salinispora and Verrucosispora, were found with high abundance exclusively in the ascidian tissue, suggesting that microbial symbionts and not the organism itself may be the true producers of the staurosporines in E. toealensis.
Asunto(s)
Actinobacteria/genética , Biodiversidad , Microbiota/genética , Urocordados/microbiología , Actinobacteria/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN/genética , Micronesia , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Estaurosporina/biosíntesisRESUMEN
Marine sponges contain dense and diverse microbial communities, which are renowned as a source of bioactive metabolites. The biological activities of sponge-microbe natural products span a broad spectrum, from antibacterial and antifungal to antitumor and antiviral applications. However, the potential of sponge-derived compounds has not been fully realized, due largely to the acknowledged "supply issue." Most bacteria from environmental samples have resisted cultivation on artificial growth media, and cultivation of sponge-associated bacteria has been a major focus in the search for novel marine natural products. One approach to isolate so-called "uncultivable" microorganisms from different environments is the diffusion growth chamber method. Here, we describe the first application of diffusion growth chambers for the isolation of cultivable and previously uncultivated bacteria from sponges. The study was conducted by implanting diffusion growth chambers in the tissue of Rhabdastrella globostellata reef sponges. In total, 255 16S rRNA gene sequences were obtained, with phylogenetic analyses revealing their affiliations with the Alpha- and Gammaproteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Fifteen sequences represented previously uncultivated bacteria belonging to the Bacteroidetes and Proteobacteria (Alpha and Gamma classes). Our results indicate that the diffusion growth chamber approach can be successfully applied in a natural, living marine environment such as sponges.