Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 325(3): H449-H467, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417875

RESUMEN

Detailed assessments of whole heart mechanics are crucial for understanding the consequences of sarcomere perturbations that lead to cardiomyopathy in mice. Echocardiography offers an accessible and cost-effective method of obtaining metrics of cardiac function, but the most routine imaging and analysis protocols might not identify subtle mechanical deficiencies. This study aims to use advanced echocardiography imaging and analysis techniques to identify previously unappreciated mechanical deficiencies in a mouse model of dilated cardiomyopathy (DCM) before the onset of overt systolic heart failure (HF). Mice lacking muscle LIM protein expression (MLP-/-) were used to model DCM-linked HF pathogenesis. Left ventricular (LV) function of MLP-/- and wild-type (WT) controls were studied at 3, 6, and 10 wk of age using conventional and four-dimensional (4-D) echocardiography, followed by speckle-tracking analysis to assess torsional and strain mechanics. Mice were also studied with RNA-seq. Although 3-wk-old MLP-/- mice showed normal LV ejection fraction (LVEF), these mice displayed abnormal torsional and strain mechanics alongside reduced ß-adrenergic reserve. Transcriptome analysis showed that these defects preceded most molecular markers of HF. However, these markers became upregulated as MLP-/- mice aged and developed overt systolic dysfunction. These findings indicate that subtle deficiencies in LV mechanics, undetected by LVEF and conventional molecular markers, may act as pathogenic stimuli in DCM-linked HF. Using these analyses in future studies will further help connect in vitro measurements of the sarcomere function to whole heart function.NEW & NOTEWORTHY A detailed study of how perturbations to sarcomere proteins impact whole heart mechanics in mouse models is a major yet challenging step in furthering our understanding of cardiovascular pathophysiology. This study uses advanced echocardiographic imaging and analysis techniques to reveal previously unappreciated subclinical whole heart mechanical defects in a mouse model of cardiomyopathy. In doing so, it offers an accessible set of measurements for future studies to use when connecting sarcomere and whole heart function.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Ratones , Animales , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Ecocardiografía/métodos , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/genética
2.
J Struct Biol ; 214(2): 107856, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35427781

RESUMEN

INTRODUCTION: The central C4 and C5 domains (C4C5) of cardiac myosin binding protein C (cMyBPC) contain a flexible interdomain linker and a cardiac-isoform specific loop. However, their importance in the functional regulation of cMyBPC has not been extensively studied. METHODS AND RESULTS: We expressed recombinant C4C5 proteins with deleted linker and loop regions and performed biophysical experiments to determine each of their structural and dynamic roles. We show that the linker and C5 loop regions modulate the secondary structure and thermal stability of C4C5. Furthermore, we provide evidence through extended molecular dynamics simulations and principle component analyses that C4C5 can adopt a completely bent or latched conformation. The simulation trajectory and interaction network analyses reveal that the completely bent conformation of C4C5 exhibits a specific pattern of residue-level interactions. Therefore, we propose a "hinge-and-latch" mechanism where the linker allows a great degree of flexibility and bending, while the loop aids in achieving a completely bent and latched conformation. Although this may be one of many bent positions that C4C5 can adopt, we illustrate for the first time in molecular detail that this type of large scale conformational change can occur in the central domains of cMyBPC. CONCLUSIONS: Our hinge-and-latch mechanism demonstrates that the linker and loop regions participate in dynamic modulation of cMyBPC's motion and global conformation. These structural and dynamic features may contribute to muscle isoform-specific regulation of actomyosin activity, and have potential implications regarding its ability to propagate or retract cMyBPC's regulatory N-terminal domains.


Asunto(s)
Citoesqueleto de Actina , Simulación de Dinámica Molecular , Citoesqueleto de Actina/química , Conformación Proteica , Estructura Secundaria de Proteína
3.
J Biol Chem ; 294(28): 10913-10927, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31147441

RESUMEN

Existing therapies to improve heart function target ß-adrenergic receptor (ß-AR) signaling and Ca2+ handling and often lead to adverse outcomes. This underscores an unmet need for positive inotropes that improve heart function without any adverse effects. The GTPase Ras associated with diabetes (RAD) regulates L-type Ca2+ channel (LTCC) current (ICa,L). Global RAD-knockout mice (gRAD-/-) have elevated Ca2+ handling and increased cardiac hypertrophy, but RAD is expressed also in noncardiac tissues, suggesting the possibility that pathological remodeling is due also to noncardiac effects. Here, we engineered a myocardial-restricted inducible RAD-knockout mouse (RADΔ/Δ). Using an array of methods and techniques, including single-cell electrophysiological and calcium transient recordings, echocardiography, and radiotelemetry monitoring, we found that RAD deficiency results in a sustained increase of inotropy without structural or functional remodeling of the heart. ICa,L was significantly increased, with RAD loss conferring a ß-AR-modulated phenotype on basal ICa,L Cardiomyocytes from RADΔ/Δ hearts exhibited enhanced cytosolic Ca2+ handling, increased contractile function, elevated sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, and faster lusitropy. These results argue that myocardial RAD ablation promotes a beneficial elevation in Ca2+ dynamics, which would obviate a need for increased ß-AR signaling to improve cardiac function.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Proteínas ras/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Cardiomegalia/metabolismo , GTP Fosfohidrolasas/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas ras/genética
4.
Arch Biochem Biophys ; 662: 213-218, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30576628

RESUMEN

Current inotropic therapies improve systolic function in heart failure patients but also elicit undesirable side effects such as arrhythmias and increased intracellular Ca2+ transients. In order to maintain myocyte Ca2+ homeostasis, the increased cytosolic Ca2+ needs to be actively transported back to sarcoplasmic reticulum leading to depleted ATP reserves. Thus, an emerging approach is to design sarcomere-based treatments to correct impaired contractility via a direct and allosteric modulation of myosin's intrinsic force-generating behavior -a concept that potentially avoids the "off-target" effects. To achieve this goal, various biophysical approaches are utilized to investigate the mechanistic impact of sarcomeric modulators but information derived from diverse approaches is not fully integrated into therapeutic applications. This is in part due to the lack of information that provides a coherent connecting link between biophysical data to in vivo function. Hence, our ability to clearly discern the drug-mediated impact on whole-heart function is diminished. Reducing this translational barrier can significantly accelerate clinical progress related to sarcomere-based therapies by optimizing drug-dosing and treatment duration protocols based on information obtained from biophysical studies. Therefore, we attempt to link biophysical mechanical measurements obtained in isolated cardiac muscle and in vivo contractile function.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio , Investigación Biomédica Traslacional , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Contracción Miocárdica/efectos de los fármacos , Sarcómeros/fisiología
5.
J Physiol ; 594(3): 669-86, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26635197

RESUMEN

KEY POINTS: ß-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the ß-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased ß-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. ß-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following ß-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in ß-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the ß-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced ß-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.


Asunto(s)
Cardiomegalia/fisiopatología , Proteínas Portadoras/fisiología , Receptores Adrenérgicos beta/fisiología , Troponina I/fisiología , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Presión Sanguínea , Cardiomegalia/patología , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Dobutamina/farmacología , Femenino , Corazón/fisiopatología , Masculino , Ratones Transgénicos , Miocardio/patología , Miofibrillas/metabolismo , Fosforilación , Troponina I/genética
6.
J Mol Cell Cardiol ; 85: 262-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26100051

RESUMEN

Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow ß-myosin heavy chain (ß-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM-induced decrease in krel which was more pronounced in the KO skinned myocardium compared to WT skinned myocardium (58% in WT vs. 76% in KO at pCa 6.1), such that baseline differences in krel between KO and WT skinned myocardium were no longer apparent following OM-incubation. A significant decrease in the kdf was also observed following OM incubation in all groups, which may be related to the increase in the number of cooperatively recruited XB's at low Ca(2+)-activations which slows the overall rate of force generation. Our results indicate that OM may be a useful pharmacological approach to normalize hypercontractile XB kinetics in myocardium with decreased cMyBP-C expression due to its molecular effects on XB behavior.


Asunto(s)
Proteínas Portadoras/metabolismo , Activadores de Enzimas/farmacología , Contracción Miocárdica/efectos de los fármacos , Urea/análogos & derivados , Animales , Calcio/fisiología , Proteínas Portadoras/genética , Femenino , Humanos , Cinética , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Miocardio/metabolismo , Miosinas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Urea/farmacología
7.
J Physiol ; 592(17): 3747-65, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24951619

RESUMEN

Cardiac myosin binding protein-C phosphorylation plays an important role in modulating cardiac muscle function and accelerating contraction. It has been proposed that Ser282 phosphorylation may serve as a critical molecular switch that regulates the phosphorylation of neighbouring Ser273 and Ser302 residues, and thereby govern myofilament contractile acceleration in response to protein kinase A (PKA). Therefore, to determine the regulatory roles of Ser282 we generated a transgenic (TG) mouse model expressing cardiac myosin binding protein-C with a non-phosphorylatable Ser282 (i.e. serine to alanine substitution, TG(S282A)). Myofibrils isolated from TG(S282A) hearts displayed robust PKA-mediated phosphorylation of Ser273 and Ser302, and the increase in phosphorylation was identical to TG wild-type (TG(WT)) controls. No signs of pathological cardiac hypertrophy were detected in TG(S282A) hearts by either histological examination of cardiac sections or echocardiography. Baseline fractional shortening, ejection fraction, isovolumic relaxation time, rate of pressure development and rate of relaxation (τ) were unaltered in TG(S282A) mice. However, the increase in cardiac contractility as well as the acceleration of pressure development observed in response to ß-adrenergic stimulation was attenuated in TG(S282A) mice. In agreement with our in vivo data, in vitro force measurements revealed that PKA-mediated acceleration of cross-bridge kinetics in TG(S282A) myocardium was significantly attenuated compared to TG(WT) myocardium. Taken together, our data suggest that while Ser282 phosphorylation does not regulate the phosphorylation of neighbouring Ser residues and basal cardiac function, full acceleration of cross-bridge kinetics and left ventricular pressure development cannot be achieved in its absence.


Asunto(s)
Proteínas Portadoras/metabolismo , Mutación , Contracción Miocárdica , Serina/genética , Agonistas Adrenérgicos beta/farmacología , Animales , Proteínas Portadoras/genética , Femenino , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Ratones , Miocardio/metabolismo , Miofibrillas/metabolismo , Miofibrillas/fisiología , Fosforilación
8.
Pflugers Arch ; 466(2): 225-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24310821

RESUMEN

Through its ability to interact with both the thick and thin filament proteins within the sarcomere, cardiac myosin binding protein-C (cMyBP-C) regulates the contractile properties of the myocardium. The central regulatory role of cMyBP-C in heart function is emphasized by the fact that a large proportion of inherited hypertrophic cardiomyopathy cases in humans are caused by mutations in cMyBP-C. The primary dysfunction in cMyBP-C-related cardiomyopathies is likely to be abnormal myofilament contractile function; however, currently, there are no effective therapies for ameliorating these contractile defects. Thus, there is a compelling need to design novel therapies to restore normal contractile function in cMyBP-C-related cardiomyopathies. To this end, concepts gleaned from various structural, functional, and biochemical studies can now be utilized to engineer cMyBP-C proteins that, when incorporated into the sarcomere, can significantly improve contractile function. In this review, we discuss the rationale for cMyBP-C-based gene therapies that can be utilized to treat contractile dysfunction in inherited and acquired cardiomyopathies.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Terapia Genética/métodos , Contracción Miocárdica/efectos de los fármacos , Cardiomiopatía Hipertrófica/terapia , Proteínas Portadoras/biosíntesis , Humanos , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miofibrillas/metabolismo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo
9.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38406555

RESUMEN

Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.

10.
Front Physiol ; 15: 1370539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487262

RESUMEN

Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.

11.
Am J Physiol Heart Circ Physiol ; 305(3): H410-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23709598

RESUMEN

Emerging evidence suggests that ventricular electrical remodeling (VER) is triggered by regional myocardial strain via mechanoelectrical feedback mechanisms; however, the ionic mechanisms underlying strain-induced VER are poorly understood. To determine its ionic basis, VER induced by altered electrical activation in dogs undergoing left ventricular pacing (n = 6) were compared with unpaced controls (n = 4). Action potential (AP) durations (APDs), ionic currents, and Ca(2+) transients were measured from canine epicardial myocytes isolated from early-activated (low strain) and late-activated (high strain) left ventricular regions. VER in the early-activated region was characterized by minimal APD prolongation, but marked attenuation of the AP phase 1 notch attributed to reduced transient outward K(+) current. In contrast, VER in the late-activated region was characterized by significant APD prolongation. Despite marked APD prolongation, there was surprisingly minimal change in ion channel densities but a twofold increase in diastolic Ca(2+). Computer simulations demonstrated that changes in sarcolemmal ion channel density could only account for attenuation of the AP notch observed in the early-activated region but failed to account for APD remodeling in the late-activated region. Furthermore, these simulations identified that cytosolic Ca(2+) accounted for APD prolongation in the late-activated region by enhancing forward-mode Na(+)/Ca(2+) exchanger activity, corroborated by increased Na(+)/Ca(2+) exchanger protein expression. Finally, assessment of skinned fibers after VER identified altered myofilament Ca(2+) sensitivity in late-activated regions to be associated with increased diastolic levels of Ca(2+). In conclusion, we identified two distinct ionic mechanisms that underlie VER: 1) strain-independent changes in early-activated regions due to remodeling of sarcolemmal ion channels with no changes in Ca(2+) handling and 2) a novel and unexpected mechanism for strain-induced VER in late-activated regions in the canine arising from remodeling of sarcomeric Ca(2+) handling rather than sarcolemmal ion channels.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Ventrículos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Potenciales de Acción , Animales , Estimulación Cardíaca Artificial , Simulación por Computador , Perros , Cinética , Masculino , Modelos Cardiovasculares , Potasio/metabolismo , Canales de Potasio/metabolismo , Sarcolema/metabolismo
12.
Front Cardiovasc Med ; 10: 1238515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600050

RESUMEN

With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.

13.
J Am Heart Assoc ; 12(20): e030682, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37804193

RESUMEN

Background Omecamtiv mecarbil (OM) and danicamtiv both increase myocardial force output by selectively activating myosin within the cardiac sarcomere. Enhanced force generation is presumably due to an increase in the total number of myosin heads bound to the actin filament; however, detailed comparisons of the molecular mechanisms of OM and danicamtiv are lacking. Methods and Results The effect of OM and danicamtiv on Ca2+ sensitivity of force generation was analyzed by exposing chemically skinned myocardial samples to a series of increasing Ca2+ solutions. The results showed that OM significantly increased Ca2+ sensitivity of force generation, whereas danicamtiv showed similar Ca2+ sensitivity of force generation to untreated preparations. A direct comparison of OM and danicamtiv on dynamic cross-bridge behavior was performed at a concentration that produced a similar force increase when normalized to predrug levels at submaximal force (pCa 6.1). Both OM and danicamtiv-treated groups slowed the rates of cross-bridge detachment from the strongly bound state and cross-bridge recruitment into the force-producing state. Notably, the significant OM-induced prolongation in the time to reach force relaxation and subsequent commencement of force generation following rapid stretch was dramatically reduced in danicamtiv-treated myocardium. Conclusions This is the first study to directly compare the effects of OM and danicamtiv on cross-bridge kinetics. At a similar level of force enhancement, danicamtiv had a less pronounced effect on the slowing of cross-bridge kinetics and, therefore, may provide a similar improvement in systolic function as OM without excessively prolonging systolic ejection time and slowing cardiac relaxation facilitating diastolic filling at the whole-organ level.


Asunto(s)
Contracción Miocárdica , Miocardio , Humanos , Miocardio/metabolismo , Cardiotónicos/farmacología , Corazón , Miosinas/metabolismo , Calcio/metabolismo
14.
J Gen Physiol ; 155(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067542

RESUMEN

Cardiac myosin binding protein C (cMyBPC) is an 11-domain sarcomeric protein (C0-C10) integral to cardiac muscle regulation. In vitro studies have demonstrated potential functional roles for regions beyond the N-terminus. However, the in vivo contributions of these domains are mostly unknown. Therefore, we examined the in vivo consequences of expression of N-terminal truncated cMyBPC (C3C10). Neonatal cMyBPC-/- mice were injected with AAV9-full length (FL), C3C10 cMyBPC, or saline, and echocardiography was performed 6 wk after injection. We then isolated skinned myocardium from virus-treated hearts and performed mechanical experiments. Our results show that expression of C3C10 cMyBPC in cMyBPC-/- mice resulted in a 28% increase in systolic ejection fraction compared to saline-injected cMyBPC-/- mice and a 25% decrease in left ventricle mass-to-body weight ratio. However, unlike expression of FL cMyBPC, there was no prolongation of ejection time compared to saline-injected mice. In vitro mechanical experiments demonstrated that functional improvements in cMyBPC-/- mice expressing C3C10 were primarily due to a 35% reduction in the rate of cross-bridge recruitment at submaximal Ca2+ concentrations when compared to hearts from saline-injected cMyBPC-/- mice. However, unlike the expression of FL cMyBPC, there was no change in the rate of cross-bridge detachment when compared to saline-injected mice. Our data demonstrate that regions of cMyBPC beyond the N-terminus are important for in vivo cardiac function, and have divergent effects on cross-bridge behavior. Elucidating the molecular mechanisms of cMyBPC region-specific function could allow for development of targeted approaches to manipulate specific aspects of cardiac contractile function.


Asunto(s)
Proteínas Portadoras , Miocardio , Ratones , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Miocardio/metabolismo , Corazón , Sarcómeros/metabolismo , Contracción Miocárdica
15.
Biochemistry ; 51(15): 3292-301, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22458937

RESUMEN

Cardiac myosin binding protein C (c-MyBPC) is a thick filament protein that is expressed in cardiac sarcomeres and is known to interact with myosin and actin. While both structural and regulatory roles have been proposed for c-MyBPC, its true function is unclear; however, phosphorylation has been shown to be important. In this study, we investigate the effect of c-MyBPC and its phosphorylation on two key steps of the cross-bridge cycle using fast reaction kinetics. We show that unphosphorylated c-MyBPC complexed with myosin in 1:1 and 3:1 myosin:c-MyBPC stoichiometries regulates the binding of myosin to actin (K(D)) cooperatively (Hill coefficient, h) (K(D) = 16.44 ± 0.33 µM, and h = 9.24 ± 1.34; K(D) = 11.48 ± 0.75 µM, and h = 3.54 ± 0.67) and significantly decelerates the ATP-induced dissociation of myosin from actin (K(1)k(+2) values of 0.12 ± 0.01 and 0.22 ± 0.01 M(-1) s(-1), respectively, compared with a value of 0.42 ± 0.01 M(-1) s(-1) for myosin alone). Phosphorylation of c-MyBPC abolished the regulation of the association phase (K(1)k(+2) values of 0.32 ± 0.02 and 0.33 ± 0.01 M(-1) s(-1) at 1:1 and 3:1 myosin:c-MyBPC ratios, respectively) and also accelerated the dissociation of myosin from actin (K(1)k(+2) values of 0.23 ± 0.01 and 0.29 ± 0.01 M(-1) s(-1) at a 1:1 and 3:1 myosin:c-MyBPC ratios, respectively) relative to the dissociation of myosin from actin in the presence of unphosphorylated c-MyBPC. These results indicate a direct effect of c-MyBPC on cross-bridge kinetics that is independent of the thin filament that together with its phosphorylation provides a mechanism for fine-tuning cross-bridge behavior to match the contractile requirements of the heart.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Contracción Miocárdica/fisiología , Adenosina Trifosfato/fisiología , Animales , Fosforilación , Porcinos
16.
ACS Omega ; 7(16): 14189-14202, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35573219

RESUMEN

Cardiac myosin binding protein C (cMyBPC) is a critical multidomain protein that modulates myosin cross bridge behavior and cardiac contractility. cMyBPC is principally regulated by phosphorylation of the residues within the M-domain of its N-terminus. However, not much is known about the phosphorylation or other post-translational modification (PTM) landscape of the central C4C5 domains. In this study, the presence of phosphorylation outside the M-domain was confirmed in vivo using mouse models expressing cMyBPC with nonphosphorylatable serine (S) to alanine substitutions. Purified recombinant mouse C4C5 domain constructs were incubated with 13 different kinases, and samples from the 6 strongest kinases were chosen for mass spectrometry analysis. A total of 26 unique phosphorylated peptides were found, representing 13 different phosphorylation sites including 10 novel sites. Parallel reaction monitoring and subsequent mutagenesis experiments revealed that the S690 site (UniProtKB O70468) was the predominant target of PKA and PKG1. We also report 6 acetylation and 7 ubiquitination sites not previously described in the literature. These PTMs demonstrate the possibility of additional layers of regulation and potential importance of the central domains of cMyBPC in cardiac health and disease. Data are available via ProteomeXchange with identifier PXD031262.

17.
Am J Physiol Heart Circ Physiol ; 300(3): H869-78, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21217059

RESUMEN

Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ∼10% α-MHC on a predominantly ß-MHC background, while in failing human ventricles α-MHC is virtually eliminated, suggesting that low-level α-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) in porcine myocardium expressing either 100% α-MHC or 100% ß-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (∼100% α-MHC) and left ventricular (∼100% ß-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentration. The rate of ATP utilization and k(tr) were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated f(app) to be ∼10-fold higher in α- compared with ß-MHC, while g(app) was 8-fold higher in α-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% α-MHC increases the maximal rate of rise of force (dF/dt(max)) by 92% compared with 0% α-MHC. These results suggest that low-level expression of α-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.


Asunto(s)
Corazón/fisiología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas Ventriculares/metabolismo , Animales , Calcio/metabolismo , Calcio/fisiología , Femenino , Masculino , Fuerza Muscular/fisiología , Miosinas/metabolismo , Porcinos/fisiología
18.
J Gen Physiol ; 153(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33688929

RESUMEN

Omecamtiv mecarbil (OM), a direct myosin motor activator, is currently being tested as a therapeutic replacement for conventional inotropes in heart failure (HF) patients. It is known that HF patients exhibit dysregulated ß-adrenergic signaling and decreased cardiac myosin-binding protein C (cMyBPC) phosphorylation, a critical modulator of myocardial force generation. However, the functional effects of OM in conditions of altered cMyBPC phosphorylation have not been established. Here, we tested the effects of OM on force generation and cross-bridge (XB) kinetics using murine myocardial preparations isolated from wild-type (WT) hearts and from hearts expressing S273A, S282A, and S302A substitutions (SA) in the M domain, between the C1 and C2 domains of cMyBPC, which cannot be phosphorylated. At submaximal Ca2+ activations, OM-mediated force enhancements were less pronounced in SA than in WT myocardial preparations. Additionally, SA myocardial preparations lacked the dose-dependent increases in force that were observed in WT myocardial preparations. Following OM incubation, the basal differences in the rate of XB detachment (krel) between WT and SA myocardial preparations were abolished, suggesting that OM differentially affects the XB behavior when cMyBPC phosphorylation is reduced. Similarly, in myocardial preparations pretreated with protein kinase A to phosphorylate cMyBPC, incubation with OM significantly slowed krel in both the WT and SA myocardial preparations. Collectively, our data suggest there is a strong interplay between the effects of OM and XB behavior, such that it effectively uncouples the sarcomere from cMyBPC phosphorylation levels. Our findings imply that OM may significantly alter the in vivo cardiac response to ß-adrenergic stimulation.


Asunto(s)
Contracción Miocárdica , Urea , Animales , Humanos , Ratones , Miocardio/metabolismo , Fosforilación , Urea/análogos & derivados , Urea/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 299(5): H1577-87, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20729398

RESUMEN

The twisting and untwisting motions of the left ventricle (LV) lead to efficient ejection of blood during systole and filling of the ventricle during diastole. Global LV mechanical performance is dependent on the contractile properties of cardiac myocytes; however, it is not known how changes in contractile protein expression affect the pattern and timing of LV rotation. At the myofilament level, contractile performance is largely dependent on the isoforms of myosin heavy chain (MHC) that are expressed. Therefore, in this study, we used MRI to examine the in vivo mechanical consequences of altered MHC isoform expression by comparing the contractile properties of hypothyroid rats, which expressed only the slow ß-MHC isoform, and euthyroid rats, which predominantly expressed the fast α-MHC isoform. Unloaded shortening velocity (V(o)) and apparent rate constants of force development (k(tr)) were measured in the skinned ventricular myocardium isolated from euthyroid and hypothyroid hearts. Increased expression of ß-MHC reduced LV torsion and fiber strain and delayed the development of peak torsion and strain during systole. Depressed in vivo mechanical performance in hypothyroid rats was related to slowed cross-bridge performance, as indicated by significantly slower V(o) and k(tr), compared with euthyroid rats. Dobutamine infusion in hypothyroid hearts produced smaller increases in torsion and strain and aberrant transmural torsion patterns, suggesting that the myocardial response to ß-adrenergic stress is compromised. Thus, increased expression of ß-MHC alters the pattern and decreases the magnitude of LV rotation, contributing to reduced mechanical performance during systole, especially in conditions of increased workload.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Corazón/fisiopatología , Hipotiroidismo/fisiopatología , Contracción Miocárdica/fisiología , Torsión Mecánica , Animales , Cardiotónicos/farmacología , Dobutamina/farmacología , Corazón/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Hipotiroidismo/metabolismo , Masculino , Modelos Animales , Contracción Miocárdica/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Circ Res ; 103(9): 974-82, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18802026

RESUMEN

Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k(rel) (s-1), and delayed force development, k(df) (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k(rel) and k(df) similar to WT myocardium, but, unlike WT, k(rel) and k(df) were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction.


Asunto(s)
Cardiomegalia/enzimología , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Contracción Miocárdica , Miocardio/enzimología , Agonistas Adrenérgicos beta/farmacología , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/fisiopatología , Proteínas Portadoras/genética , Dobutamina/farmacología , Ecocardiografía Doppler , Humanos , Cinética , Mecanotransducción Celular , Ratones , Ratones Transgénicos , Fuerza Muscular , Mutación , Contracción Miocárdica/efectos de los fármacos , Miocardio/patología , Miofibrillas/enzimología , Fosforilación , Sarcómeros/enzimología , Troponina I/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda