Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neuroinflammation ; 19(1): 286, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457019

RESUMEN

The most significant genetic risk factor for developing late-onset Alzheimer's disease (AD) is the ε4 allele of apolipoprotein E (APOE4). APOE genotype and biological sex are key modulators of microglial and astroglial function, which exert multiple effects on AD pathogenesis. Here, we show astroglial interactions with amyloid plaques in the EFAD transgenic mouse model of AD. Using confocal microscopy, we observed significantly lower levels of astrocytic plaque coverage and plaque compaction (beneficial effects of glial barrier formation) with APOE4 genotype and female sex. Conversely, neurite damage and astrocyte activation in the plaque environment were significantly higher in APOE4 carriers and female mice. Astrocyte coverage of plaques was highest in APOE3 males and poorest in APOE4 females. Collectively, our findings provide new insights into the roles of astroglia and highlight the importance of addressing independent and interactive effects of APOE genotype and biological sex in understanding processes contributing to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Femenino , Masculino , Ratones , Animales , Placa Amiloide/genética , Astrocitos , Enfermedad de Alzheimer/genética , Apolipoproteína E4 , Apolipoproteínas E/genética , Genotipo , Ratones Transgénicos
2.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333119

RESUMEN

Analyzing Alzheimer's disease (AD) pathology within anatomical subregions is a significant challenge, often carried out by pathologists using a standardized, semi-quantitative approach. To augment traditional methods, a high-throughput, high-resolution pipeline was created to classify the distribution of AD pathology within hippocampal subregions. USC ADRC post-mortem tissue sections from 51 patients were stained with 4G8 for amyloid, Gallyas for neurofibrillary tangles (NFTs) and Iba1 for microglia. Machine learning (ML) techniques were utilized to identify and classify amyloid pathology (dense, diffuse and APP (amyloid precursor protein)), NFTs, neuritic plaques and microglia. These classifications were overlaid within manually segmented regions (aligned with the Allen Human Brain Atlas) to create detailed pathology maps. Cases were separated into low, intermediate, or high AD stages. Further data extraction enabled quantification of plaque size and pathology density alongside ApoE genotype, sex, and cognitive status. Our findings revealed that the increase in pathology burden across AD stages was driven mainly by diffuse amyloid. The pre and para-subiculum had the highest levels of diffuse amyloid while NFTs were highest in the A36 region in high AD cases. Moreover, different pathology types had distinct trajectories across disease stages. In a subset of AD cases, microglia were elevated in intermediate and high compared to low AD. Microglia also correlated with amyloid pathology in the Dentate Gyrus. The size of dense plaques, which may represent microglial function, was lower in ApoE4 carriers. In addition, individuals with memory impairment had higher levels of both dense and diffuse amyloid. Taken together, our findings integrating ML classification approaches with anatomical segmentation maps provide new insights on the complexity of disease pathology in AD progression. Specifically, we identified diffuse amyloid pathology as being a major driver of AD in our cohort, regions of interest and microglial responses that might advance AD diagnosis and treatment.

3.
Acta Neuropathol Commun ; 7(1): 82, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113487

RESUMEN

Microglia affect Alzheimer's disease (AD) pathogenesis in opposing manners, by protecting against amyloid accumulation in early phases of the disease and promoting neuropathology in advanced stages. Recent research has identified specific microglial interactions with amyloid plaques that exert important protective functions including attenuation of early pathology. It is unknown how these protective microglial interactions with plaques are affected by apolipoprotein E (APOE) genotype and sex, two well-established AD risk factors that modulate microglial function. We investigated this question using quantitative confocal microscopy to compare microglial interactions with amyloid plaques in male and female EFAD mice across APOE3 and APOE4 genotypes at 6 months of age. We observed that microglial coverage of plaques is highest in male APOE3 mice with significant reductions in coverage observed with both APOE4 genotype and female sex. Plaque compaction, a beneficial consequence of microglial interactions with plaques, showed a similar pattern in which APOE4 genotype and female sex were associated with significantly lower values. Within the plaque environment, microglial expression of triggering receptor expressed on myeloid cells 2 (TREM2), a known regulator of microglial plaque coverage, was highest in male APOE3 mice and reduced by APOE4 genotype and female sex. These differences in plaque interactions were unrelated to the number of microglial processes in the plaque environment across groups. Interestingly, the pattern of amyloid burden across groups was opposite to that of microglial plaque coverage, with APOE4 genotype and female sex showing the highest amyloid levels. These findings suggest a possible mechanism by which microglia may contribute to the increased AD risk associated with APOE4 genotype and female sex.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Encéfalo/patología , Microglía/patología , Placa Amiloide/patología , Animales , Femenino , Genotipo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Receptores Inmunológicos/metabolismo , Caracteres Sexuales
4.
Mar Pollut Bull ; 46(3): 308-13, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12604064

RESUMEN

Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.


Asunto(s)
ADN Bacteriano/análisis , Navíos , Eliminación de Residuos Líquidos , Microbiología del Agua , Monitoreo del Ambiente/métodos , Citometría de Flujo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda