Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 562(7727): 401-405, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30297798

RESUMEN

Optical frequency combs are broadband sources that offer mutually coherent, equidistant spectral lines with unprecedented precision in frequency and timing for an array of applications1. Frequency combs generated in microresonators through the Kerr nonlinearity require a single-frequency pump laser and have the potential to provide highly compact, scalable and power-efficient devices2,3. Here we demonstrate a device-a laser-integrated Kerr frequency comb generator-that fulfils this potential through use of extremely low-loss silicon nitride waveguides that form both the microresonator and an integrated laser cavity. Our device generates low-noise soliton-mode-locked combs with a repetition rate of 194 gigahertz at wavelengths near 1,550 nanometres using only 98 milliwatts of electrical pump power. The dual-cavity configuration that we use combines the laser and microresonator, demonstrating the flexibility afforded by close integration of these components, and together with the ultra low power consumption should enable production of highly portable and robust frequency and timing references, sensors and signal sources. This chip-based integration of microresonators and lasers should also provide tools with which to investigate the dynamics of comb and soliton generation.

2.
Opt Express ; 29(19): 29946-29959, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614728

RESUMEN

We propose and demonstrate an integrated wavemeter capable of accurate and broadband measurements without control or knowledge of the temperature. In our design, interferometers composed of silicon and silicon nitride waveguides enable accurate measurements of an input optical wavelength despite large and rapid temperature fluctuations of 20°C by leveraging the disparity in thermo-optic properties of the waveguides. We derive formulas which resolve the wavelength and temperature ambiguity of the interferometers. The fabricated wavemeter chip is found to have a mean accuracy of 11 pm over an 80 nm range near 1550 nm. To our knowledge, this is the first demonstration of an athermal silicon wavemeter and the lowest measurement error across such a broad wavelength range using silicon photonics. This result may reduce the cost and size of wavemeters used in combination with integrated lasers for optical communications, sensing, and other applications.

3.
Opt Express ; 28(15): 22540-22548, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752513

RESUMEN

We report on the self-biasing effect of carrier depletion based silicon microring modulators (MRM) by demonstrating that a silicon MRM can generate open eye diagrams for non-return-to-zero (NRZ) on-off keying (OOK) modulation without an external reverse bias supplied to it. Two modulator configurations are investigated namely single-ended drive in a ground-signal-ground and differential drive in a ground-signal-signal-ground pad configurations. The single-ended modulator is designed with an on photonic integrated circuit (PIC) 50 Ω termination. Open eye diagrams are obtained at 25 Gbit/s and 36 Gbit/s NRZ OOK modulations. We carry-out thorough experimental characterization of the self-biasing of single-ended MRM under various operating conditions of input optical power, carrier wavelength, ring quality factor and extinction ratio as well as modulation speeds, driving voltage swing and pattern length. We demonstrate that the self-biasing is robust and works well in almost all tested conditions. The differential drive MRM is designed with a high impedance without an on-PIC 50 Ω termination. Open eye diagrams are obtained at 30 Gbit/s and 60 Gbit/s NRZ OOK modulations for modulating voltage swing of ∼2.5 Vpp. As demonstrated, the self-biasing works well in both single-ended and differential drive configurations as well as for on-PIC 50 Ω terminated and non-terminated MRMs. The electrical passive parts are all co-designed and fabricated on the same silicon chip as the PIC. The reported self-biasing eliminates the need of having bipolar DC biases supplied to the anode and cathode of the differential drive modulator and allows for simpler driver / modulator interfaces without inductive bias tees.

4.
Opt Lett ; 45(22): 6198-6201, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186949

RESUMEN

We demonstrate a hybrid silicon tunable laser with wide tunability and rapid switching speed for applications in sensing and optical networks. By implementing an optimized carrier injection phase shifter design, the filters of the silicon laser cavity may be efficiently controlled, enabling both fine and broad wavelength tuning across a 56 nm range, in addition to a rapid 10 ns switching time. The laser emits up to 10 dBm output power, and the linewidth is near 200 kHz. The fast wavelength switching demonstrated here may be employed in data center and access networks, while the potential for rapid wavelength sweeping is attractive for optical sensing and imaging applications.

5.
Opt Express ; 26(2): 1547-1555, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402028

RESUMEN

Since the emergence of optical fiber communications, lithium niobate (LN) has been the material of choice for electro-optic modulators, featuring high data bandwidth and excellent signal fidelity. Conventional LN modulators however are bulky, expensive and power hungry, and cannot meet the growing demand in modern optical data links. Chip-scale, highly integrated, LN modulators could offer solutions to this problem, yet the fabrication of low-loss devices in LN thin films has been challenging. Here we overcome this hurdle and demonstrate monolithically integrated LN electro-optic modulators that are significantly smaller and more efficient than traditional bulk LN devices, while preserving LN's excellent material properties. Our compact LN electro-optic platform consists of low-loss nanoscale LN waveguides, micro-ring resonators and miniaturized Mach-Zehnder interferometers, fabricated by directly shaping LN thin films into sub-wavelength structures. The efficient confinement of both optical and microwave fields at the nanoscale dramatically improves the device performances featuring a half-wave electro-optic modulation efficiency of 1.8 V∙cm while operating at data rates up to 40 Gbps. Our monolithic LN nanophotonic platform enables dense integration of high-performance active components, opening new avenues for future high-speed, low power and cost-effective communication networks.

6.
Opt Lett ; 42(21): 4541-4544, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088208

RESUMEN

We design and demonstrate a compact, narrow-linewidth integrated laser based on low-loss silicon nitride waveguides coupled to a III-V gain chip. By using a highly confined optical mode, we simultaneously achieve compact bends and ultra-low loss. We leverage the narrowband backreflection of a high-Q microring resonator to act as a cavity output mirror, a single-mode filter, and a propagation delay all in one. This configuration allows the ring to provide feedback and obtain a laser linewidth of 13 kHz with 1.7 mW output power around 1550 nm. This demonstration realizes a compact sub-millimeter silicon nitride laser cavity with a narrow linewidth.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda