Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680190

RESUMEN

Taste papillae are specialized organs, each of which comprises an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during early taste papilla development in mouse embryos, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for epithelial Wnt/ß-catenin activity and taste papilla differentiation. Mesenchyme-specific knockout (cKO) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governed the production of previously unappreciated secretory proteins, i.e. it suppressed those that inhibit and facilitated those that promote taste papilla differentiation. Bulk RNA-sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO versus control. Moreover, we detected downregulated epithelial Wnt/ß-catenin signaling and found that taste papilla development in the Alk3 cKO was rescued by the GSK3ß inhibitor LiCl, but not by Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation.


Asunto(s)
Papilas Gustativas , Animales , Ratones , beta Catenina , Gusto , Lengua , Diferenciación Celular/genética , Mesodermo
2.
Stem Cells ; 41(8): 792-808, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37279550

RESUMEN

Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.


Asunto(s)
Células Madre Mesenquimatosas , Consenso , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Inmunomodulación
3.
Cytotherapy ; 24(2): 137-148, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34696960

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function. METHODS: Three MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores. RESULTS: Significant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88). CONCLUSIONS: The work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Citocinas , Metabolómica
4.
Development ; 144(22): 4114-4124, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28993398

RESUMEN

The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here, we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared with the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that the African ZIKV isolate (MR-766) is more potent at causing brain damage and postnatal lethality than MEX1-44. In comparison with MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more toxic and causes more potent brain damage than the Asian lineage.


Asunto(s)
Encéfalo/patología , Encéfalo/virología , Virus del Dengue/patogenicidad , Filogenia , Virus Zika/patogenicidad , África , Animales , Animales Recién Nacidos , Asia , Encéfalo/embriología , Muerte Celular , Corteza Cerebral/patología , Virus del Dengue/crecimiento & desarrollo , Gliosis/patología , Gliosis/virología , Ratones Endogámicos C57BL , Microcefalia/patología , Microglía/patología , Microglía/virología , Células-Madre Neurales/patología , Neuronas/patología , Virulencia , Virus Zika/crecimiento & desarrollo
5.
J Surg Res ; 239: 269-277, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30884383

RESUMEN

BACKGROUND: A novel injectable expanding foam based on hydrophobically modified chitosan (HM-CS) was developed to improve hemostasis during surgeries. HM-CS is an amphiphilic derivative of the natural biopolymer chitosan (CS); HM-CS has been shown to improve the natural hemostatic characteristics of CS, but its internal safety has not been systematically evaluated. The goal of this study was to compare the long-term in vivo safety of HM-CS relative to a commonly used fibrin sealant (FS), TISSEEL (Baxter). METHODS: Sixty-four Sprague-Dawley rats (275-325 g obtained from Charles River Laboratories) were randomly assigned to control (n = 16) or experimental (n = 48) groups. Samples of the test materials (HM-CS [n = 16], CS [n = 16], and FS [n = 16]) applied to a nonlethal liver excision (0.4 ± 0.3 g of the medial lobe) in rats were left inside the abdomen to degrade. Animals were observed daily for signs of morbidity and mortality. Surviving animals were sacrificed at 1 and 6 wk; the explanted injury sites were microscopically assessed. RESULTS: All animals (64/64) survived both the 1- and 6-wk time points without signs of morbidity. Histological examination showed a comparable pattern of degradation for the various test materials. FS remnants and significant adhesions to neighboring tissues were observed at 6 wk. Residual CS and HM-CS were observed at the 6 wk with fatty deposits at the site of injury. Minimal adhesions were observed for CS and HM-CS. CONCLUSIONS: The internal safety observed in the HM-CS test group after abdominal implantation indicates that injectable HM-CS expanding foam may be an appropriate internal use hemostatic candidate.


Asunto(s)
Pérdida de Sangre Quirúrgica/prevención & control , Quitosano/administración & dosificación , Hemostasis Quirúrgica/métodos , Hemostáticos/administración & dosificación , Animales , Quitosano/efectos adversos , Quitosano/química , Modelos Animales de Enfermedad , Adhesivo de Tejido de Fibrina/administración & dosificación , Hemostáticos/efectos adversos , Hemostáticos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/cirugía , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
6.
Stroke ; 49(5): 1248-1256, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29650593

RESUMEN

BACKGROUND AND PURPOSE: Recent work from our group suggests that human neural stem cell-derived extracellular vesicle (NSC EV) treatment improves both tissue and sensorimotor function in a preclinical thromboembolic mouse model of stroke. In this study, NSC EVs were evaluated in a pig ischemic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model. METHODS: Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO), and either NSC EV or PBS treatment was administered intravenously at 2, 14, and 24 hours post-MCAO. NSC EV effects on tissue level recovery were evaluated via magnetic resonance imaging at 1 and 84 days post-MCAO. Effects on functional recovery were also assessed through longitudinal behavior and gait analysis testing. RESULTS: NSC EV treatment was neuroprotective and led to significant improvements at the tissue and functional levels in stroked pigs. NSC EV treatment eliminated intracranial hemorrhage in ischemic lesions in NSC EV pigs (0 of 7) versus control pigs (7 of 8). NSC EV-treated pigs exhibited a significant decrease in cerebral lesion volume and decreased brain swelling relative to control pigs 1-day post-MCAO. NSC EVs significantly reduced edema in treated pigs relative to control pigs, as assessed by improved diffusivity through apparent diffusion coefficient maps. NSC EVs preserved white matter integrity with increased corpus callosum fractional anisotropy values 84 days post-MCAO. Behavior and mobility improvements paralleled structural changes as NSC EV-treated pigs exhibited improved outcomes, including increased exploratory behavior and faster restoration of spatiotemporal gait parameters. CONCLUSIONS: This study demonstrated for the first time that in a large animal model novel NSC EVs significantly improved neural tissue preservation and functional levels post-MCAO, suggesting NSC EVs may be a paradigm changing stroke therapeutic.


Asunto(s)
Edema Encefálico/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Vesículas Extracelulares/trasplante , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Células-Madre Neurales , Recuperación de la Función , Sustancia Blanca/diagnóstico por imagen , Animales , Anisotropía , Conducta Animal , Encéfalo/diagnóstico por imagen , Edema Encefálico/fisiopatología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/fisiopatología , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Conducta Exploratoria , Marcha , Humanos , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Porcinos
7.
Biochem Biophys Res Commun ; 479(2): 305-311, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27639649

RESUMEN

The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Papilas Gustativas/embriología , Papilas Gustativas/metabolismo , Transducina/metabolismo , Vimentina/metabolismo , Animales , Pollos , Epitelio/metabolismo , Inmunohistoquímica , Fenotipo , Distribución Tisular
8.
Adv Funct Mater ; 26(22): 3899-3915, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28751853

RESUMEN

Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.

9.
Nat Methods ; 10(5): 438-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23563795

RESUMEN

We demonstrate substantial differences in 'adhesive signature' between human pluripotent stem cells (hPSCs), partially reprogrammed cells, somatic cells and hPSC-derived differentiated progeny. We exploited these differential adhesion strengths to rapidly (over ∼10 min) and efficiently isolate fully reprogrammed induced hPSCs (hiPSCs) as intact colonies from heterogeneous reprogramming cultures and from differentiated progeny using microfluidics. hiPSCs were isolated label free, enriched to 95%-99% purity with >80% survival, and had normal transcriptional profiles, differentiation potential and karyotypes. We also applied this strategy to isolate hPSCs (hiPSCs and human embryonic stem cells) during routine culture and show that it may be extended to isolate hPSC-derived lineage-specific stem cells or differentiated cells.


Asunto(s)
Adhesión Celular , Células Madre Pluripotentes/citología , Diferenciación Celular , Separación Celular , Humanos , Cariotipificación
10.
Virol J ; 13(1): 205, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27919263

RESUMEN

BACKGROUND: Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV-caused disease. Induced pluripotent stem cell (iPSC) technology allows adult cells to be reprogrammed into an embryonic stem cell-like state capable of contributing to live offspring and passing on unique traits in a number of species. Recently, iPSC approaches have been successfully applied to avian cells. If chicken induced pluripotent stem cells (ciPSCs) are genetically or epigenetically modified to resist NDV infection, it may be possible to generate ND resistant poultry. There is limited information on the potential of ciPSCs to be infected by NDV, or the capacity of these cells to become resistant to infection. The aim of the present work was to assess the characteristics of the interaction between NDV and ciPSCs, and to develop a selection method that would increase tolerance of these cells to NDV-induced cellular damage. RESULTS: Results showed that ciPSCs were permissive to infection with NDV, and susceptible to virus-mediated cell death. Since ciPSCs that survived infection demonstrated the ability to recover quickly, we devised a system to select surviving cells through multiple infection rounds with NDV. ciPSCs that sustained 9 consecutive infections had a statistically significant increase in survival (up to 36 times) compared to never-infected ciPSCs upon NDV infection (tolerant cells). Increased survival was not caused by a loss of permissiveness to NDV replication. RNA sequencing followed by enrichment pathway analysis showed that numerous metabolic pathways where differentially regulated between tolerant and never-infected ciPSCs. CONCLUSIONS: Results demonstrate that ciPSCs are permissive to NDV infection and become increasingly tolerant to NDV under selective pressure, indicating that this system could be applied to study mechanisms of cellular tolerance to NDV.


Asunto(s)
Células Madre Pluripotentes Inducidas/virología , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Cultivo de Virus , Animales , Supervivencia Celular , Pollos , Interacciones Huésped-Patógeno , Virología/métodos
11.
Biologicals ; 44(1): 24-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586283

RESUMEN

Traditionally, substrates for production of viral poultry vaccines have been embryonated eggs or adherent primary cell cultures. The difficulties and cost involved in scaling up these substrates in cases of increased demand have been a limitation for vaccine production. Here, we assess the ability of a newly developed chicken-induced pluripotent cell line, BA3, to support replication and growth of Newcastle disease virus (NDV) LaSota vaccine strain. The characteristics and growth profile of the cells were also investigated. BA3 cells could grow in suspension in different media to a high density of up to 7.0 × 10(6) cells/mL and showed rapid proliferation with doubling time of 21 h. Upon infection, a high virus titer of 1.02 × 10(8) EID50/mL was obtained at 24 h post infection using a multiplicity of infection (MOI) of 5. In addition, the cell line was shown to be free of endogenous and exogenous Avian Leukosis viruses, Reticuloendotheliosis virus, Fowl Adenovirus, Marek's disease virus, and several Mycoplasma species. In conclusion, BA3 cell line is potentially an excellent candidate for vaccine production due to its highly desirable industrially friendly characteristics of growing to high cell density and capability of growth in serum free medium.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle , Vacunas Virales/biosíntesis , Animales , Línea Celular , Embrión de Pollo , Pollos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/virología
12.
Biologicals ; 43(4): 274-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26050911

RESUMEN

Each year millions of chickens die from Newcastle disease virus (NDV) worldwide leading to severe economic and food losses. Current vaccination campaigns have limitations especially in developing countries, due to elevated costs, need of trained personnel for effective vaccine administration, and functional cold chain network to maintain vaccine viability. These problems have led to heightened interest in producing new antiviral strategies, such as RNA interference (RNAi). RNAi methodology is capable of substantially decreasing viral replication at a cellular level, both in vitro and in vivo. In this study, we utilize microRNA (miRNA)-expressing constructs (a type of RNA interference) in an attempt to target and knockdown five NDV structural RNAs for nucleoprotein (NP), phosphoprotein (P), matrix (M), fusion (F), and large (L) protein genes. Immortalized chicken embryo fibroblast cells (DF-1) that transiently expressed miRNA targeting NP mRNA, showed increased resistance to NDV-induced cytopathic effects, as determined by cell count, relative to the same cells expressing miRNA against alternative NDV proteins. Upon infection with NDV, DF-1 cells constitutively expressing the NP miRNA construct had improved cell survival up to 48 h post infection (h.p.i) and decreased viral yield up to 24 h.p.i. These results suggest that overexpression of the NP miRNA in cells and perhaps live animal may provide resistance to NDV.


Asunto(s)
Virus de la Enfermedad de Newcastle/fisiología , Nucleoproteínas/genética , Interferencia de ARN , Replicación Viral , Animales , Línea Celular , Embrión de Pollo
13.
Stem Cells Dev ; 33(5-6): 117-127, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164117

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSC-EVs) have been proposed as a novel therapeutic tool with numerous clinically related advantages. However, their characteristics and functionality are dependent on the source of MSCs and their cell culture conditions. Fetal bovine serum (FBS) provides a source of nutrients and growth factors to the cultured cells. However, certain pitfalls are associated with its supplementation to the culture media, including introduction of exogenous FBS-derived EVs to the cultured cells. Thus, recent practices recommend utilization of serum-free (SF) media or EV-depleted FBS. On the contrary, evidence suggests that the immunomodulatory ability of MSC-EVs can be improved by exposing MSCs to an inflammatory (IF) environment. The objective of this study was to (1) compare EVs isolated from two tissue sources of MSCs that were exposed to various cell culture conditions and (2) to evaluate their anti-inflammatory effects. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and umbilical cord-derived mesenchymal stromal cells (UC-MSCs) were exposed to either a SF media environment, an IF environment, or media supplemented with 5% EV-depleted FBS. Following isolation of MSC-EVs, the isolates were quantified and evaluated for particle size, phenotypic changes, and their immunomodulatory potential. A statistically significant difference was not identified on the yield and protein concentration of different isolates of EVs from BM-MSCs and UC-MSCs, and all isolates had a circular appearance as evaluated via electron microscopy. A significant difference was identified on the phenotype of different EVs isolates; however, all isolates expressed classical markers such as CD9, CD63, and CD81. The addition of BM-derived MSC-EVs from FBS environment or UC-derived MSC-EVs from IF environment resulted in statistically significant downregulation of IL-6 messenger RNA (mRNA) in stimulated leukocytes. This study confirms that EVs produced by different MSC sources and cell culture conditions affect their phenotype and their immunomodulatory capacities.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Médula Ósea , Técnicas de Cultivo de Célula , Vesículas Extracelulares/metabolismo , Células Cultivadas , Cordón Umbilical , Medio de Cultivo Libre de Suero/farmacología , Células de la Médula Ósea
14.
Am J Physiol Cell Physiol ; 304(4): C289-98, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23220114

RESUMEN

The objective of this study was to develop a novel in vitro model for smooth muscle cell (SMC) differentiation from human embryonic stem cell-derived mesenchymal cells (hES-MCs). We found that hES-MCs were differentiated to SMCs by transforming growth factor-ß (TGF-ß) in a dose- and time-dependent manner as demonstrated by the expression of SMC-specific genes smooth muscle α-actin, calponin, and smooth muscle myosin heavy chain. Under normal growth conditions, however, the differentiation capacity of hES-MCs was very limited. hES-MC-derived SMCs had an elongated and spindle-shaped morphology and contracted in response to the induction of carbachol and KCl. KCl-induced calcium transient was also evident in these cells. Compared with the parental cells, TGF-ß-treated hES-MCs sustained the endothelial tube formation for a longer time due to the sustained SMC phenotype. Mechanistically, TGF-ß-induced differentiation was both Smad- and serum response factor/myocardin dependent. TGF-ß regulated myocardin expression via multiple signaling pathways including Smad2/3, p38 MAPK, and PI3K. Importantly, we found that a low level of myocardin was present in mesoderm prior to SMC lineage determination, and a high level of myocardin was not induced until the differentiation process was initiated. Taken together, our study characterized a novel SMC differentiation model that can be used for studying human SMC differentiation from mesoderm during vascular development.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Células Madre Mesenquimatosas/fisiología , Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Señalización del Calcio , Técnicas de Cultivo de Célula , Forma de la Célula , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/fisiología , Expresión Génica , Humanos , Contracción Muscular , Desarrollo de Músculos , Miocitos del Músculo Liso/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Factor de Respuesta Sérica/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional , Factor de Crecimiento Transformador beta/fisiología
15.
Stem Cells ; 30(11): 2387-99, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22899336

RESUMEN

Various growth factor cocktails have been used to proliferate and then differentiate human neural progenitor (NP) cells derived from embryonic stem cells (ESC) for in vitro and in vivo studies. However, the cytokine leukemia inhibitory factor (LIF) has been largely overlooked. Here, we demonstrate that LIF significantly enhanced in vitro survival and promoted differentiation of human ESC-derived NP cells. In NP cells, as well as NP-derived neurons, LIF reduced caspase-mediated apoptosis and reduced both spontaneous and H2O2-induced reactive oxygen species in culture. In vitro, NP cell proliferation and the yield of differentiated neurons were significantly higher in the presence of LIF. In NP cells, LIF enhanced cMyc phosphorylation, commonly associated with self-renewal/proliferation. Also, in differentiating NP cells LIF activated the phosphoinositide 3-kinase and signal transducer and activator of transcription 3 pathways, associated with cell survival and reduced apoptosis. When differentiated in LIF+ media, neurite outgrowth and ERK1/2 phosphorylation were potentiated together with increased expression of gp130, a component of the LIF receptor complex. NP cells, pretreated in vitro with LIF, were effective in reducing infarct volume in a model of focal ischemic stroke but LIF did not lead to significantly improved initial NP cell survival over nontreated NP cells. Our results show that LIF signaling significantly promotes human NP cell proliferation, survival, and differentiation in vitro. Activated LIF signaling should be considered in cell culture expansion systems for future human NP cell-based therapeutic transplant studies.


Asunto(s)
Células Madre Embrionarias/fisiología , Factor Inhibidor de Leucemia/fisiología , Factores de Crecimiento Nervioso/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/terapia , Factor Inhibidor de Leucemia/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/administración & dosificación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Activación Transcripcional
16.
Birth Defects Res B Dev Reprod Toxicol ; 98(3): 283-95, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23696232

RESUMEN

Ethanol is a powerful substance and, when consumed during pregnancy, has significant psychoactive and developmental effects on the developing fetus. These abnormalities include growth retardation, neurological deficits, and behavioral and cognitive deficiencies, commonly referred to as fetal alcohol spectrum disorder. The effect of ethanol has been reported to affect cellular development on the embryonic level, however, not much is known about mutations contributing to the influence of ethanol. The purpose of our study was to determine if mutation contribute to changes in differentiation patterning, cell-cycle regulatory gene expression, and DNA methylation in human embryonic stem cells after ethanol exposure. We exposed human embryonic stem cells (with and without know DNA mutations) to a low concentration (20 mM) of ethanol and measured neurosphere proliferation and differentiation, glial protein levels, expression of various cell-cycle genes, and DNA methylation. Ethanol altered cell-cycle gene expression between the two cell lines; however, gene methylation was not affected in ether lines.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Aberraciones Cromosómicas , Células Madre Embrionarias/efectos de los fármacos , Etanol/toxicidad , Neuronas/patología , Esferoides Celulares/efectos de los fármacos , Bromodesoxiuridina/metabolismo , Recuento de Células , Línea Celular , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/patología , Fase G2/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/metabolismo , Mitosis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/patología
17.
bioRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066397

RESUMEN

Taste papillae are specialized organs each of which is comprised of an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during the early stages of embryonic development, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for the epithelial Wnt/ß-catenin activity and taste papilla cell differentiation. Mesenchyme-specific knockout ( cKO ) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governs the production of previously unappreciated secretory proteins, i.e., suppresses those that inhibiting and facilitates those promoting taste cell differentiation. Bulk RNA-Sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO vs control. Moreover, we detected a down-regulated epithelial Wnt/ß-catenin signaling, and taste papilla development in the Alk3 cKO was rescued by GSK3ß inhibitor LiCl, but not Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation. Summary statement: This is the first set of data to implicate the requirement of tongue mesenchyme in taste papilla cell differentiation.

18.
Stem Cells ; 29(10): 1640-3, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22039609

RESUMEN

The recent development of porcine induced pluripotent stem cells (piPSCs) capable of generating chimeric animals, a feat not previously accomplished with embryonic stem cells or iPSCs in a species outside of rodents, has opened the doors for in-depth study of iPSC tumorigenicity, autologous transplantation, and other key aspects to safely move iPSC therapies to the clinic. The study of iPSC tumorigenicity is critical as previous research in the mouse showed that iPSC-derived chimeras possessed large numbers of tumors, rising significant concerns about the safety of iPSC therapies. Additionally, piPSCs capable of generating germline chimeras could revolutionize the transgenic animal field by enabling complex genetic manipulations (e.g., knockout or knockin of genes) to produce biomedically important large animal models or improve livestock production. In this study, we demonstrate for the first time in a nonrodent species germline transmission of iPSCs with the live birth of a transgenic piglet that possessed genome integration of the human POU5F1 and NANOG genes. In addition, gross and histological examination of necropsied porcine chimeras at 2, 7, and 9 months showed that these animals lacked tumor formation and demonstrated normal development. Tissue samples positive for human POU5F1 DNA showed no C-MYC gene expression, further implicating C-MYC as a cause of tumorigenicity. The development of germline-competent porcine iPSCs that do not produce tumors in young chimeric animals presents an attractive and powerful translational model to study the efficacy and safety of stem cell therapies and perhaps to efficiently produce complex transgenic animals.


Asunto(s)
Quimera/genética , Células Germinativas/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Animales Modificados Genéticamente , Transformación Celular Neoplásica/genética , Quimera/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Secuencia de ADN , Porcinos
19.
Proteomics ; 11(12): 2515-27, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21598385

RESUMEN

Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell-based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09-derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose-gradient isolation, 1-D gel electrophoresis followed by in-gel digestion and analysis by reverse phase chromatography coupled to ion trap-FT-ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09-derived human neural progenitor cells from the parent hESC population, and WA09-derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas de la Membrana , Células Madre Mesenquimatosas/metabolismo , Células-Madre Neurales/metabolismo , Fragmentos de Péptidos/análisis , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Cromatografía de Fase Inversa , Duplicación Cromosómica/genética , Electroforesis en Gel de Poliacrilamida , Células Madre Embrionarias/citología , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Cariotipificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Proteómica/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Trisomía/genética , Tripsina/metabolismo
20.
J Recept Signal Transduct Res ; 31(3): 206-13, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21619448

RESUMEN

Ionotropic receptors are the target for most mood-defining compounds. Chronic exposure to ethanol (EtOH) alters receptor-mediated responses and the numbers of these channels and specific subunits; as well as induces anxiolytic, sedative, and anesthetic activity in the human brain. However, very little is known regarding the effects of EtOH on ionotropic receptor transcription during early human development (preimplantation). Using two separate human embryonic stem cell lines the study shows that low amounts of EtOH (20 mM) alters transcription of the ionotropic subunit GABRB3. Changes in ionotrophic receptor expression influence the central nervous system development and have been shown to produce brain abnormalities in animal models. These results suggest that low concentrations of EtOH can alter ionotropic receptor transcription during early human development (preimplantation), which may be a contributing factor to the neurological phenotypes seen in fetal alcohol spectrum disorder (FASD).


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Etanol/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Receptores de GABA-A/genética , Western Blotting , Línea Celular , Densitometría , Perfilación de la Expresión Génica , Humanos , Receptores de GABA-A/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda