Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Sci Technol ; 56(18): 13019-13028, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36053064

RESUMEN

The Deepwater Horizon (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi (Coryphaena hippurus)─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure. However, more than a decade postspill, impacts on wild populations remain unknown. To address this gap, we exposed wild mahi-mahi to crude oil or control conditions onboard a research vessel, collected fin clip samples, and tagged them with electronic tags prior to release into the GOM. We demonstrate profound effects on survival and reproduction in the wild. In addition to significant changes in gene expression profiles and predation mortality, we documented altered acceleration and habitat use in the first 8 days oil-exposed individuals were at liberty as well as a cessation of apparent spawning activity for at least 37 days. These data reveal that even a brief and low-dose exposure to crude oil impairs fitness in wild mahi-mahi. These findings offer new perspectives on the lasting impacts of the DWH blowout and provide insight about the impacts of future deep-sea oil spills.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Golfo de México , Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-34755650

RESUMEN

Teleost fishes are diverse and successful, comprising almost half of all extant vertebrate species. It has been suggested that their success as a group is related, in part, to their unique O2 transport system, which includes pH-sensitive hemoglobin, a red blood cell ß-adrenergic Na+/H+ exchanger (RBC ß-NHE) that protects red blood cell pH, and plasma accessible carbonic anhydrase which is absent at the gills but present in some tissues, that short-circuits the ß-NHE to enhance O2 unloading during periods of stress. However, direct support for this has only been examined in a few species of salmonids. Here, we expand the knowledge of this system to two warm-water, highly active marine percomorph fish, cobia (Rachycentron canadum) and mahi-mahi (Coryphaena hippurus). We show evidence for RBC ß-NHE activity in both species, and characterize the Hb-O2 transport system in one of those species, cobia. We found significant RBC swelling following ß-adrenergic stimulation in both species, providing evidence for the presence of a rapid, active RBC ß-NHE in both cobia and mahi-mahi, with a time-course similar to that of salmonids. We generated oxygen equilibrium curves (OECs) for cobia blood and determined the P50, Hill, and Bohr coefficients, and used these data to model the potential for enhanced O2 unloading. We determined that there was potential for up to a 61% increase in O2 unloading associated with RBC ß-NHE short-circuiting, assuming a - 0.2 ∆pHa-v in the blood. Thus, despite phylogenetic and life history differences between cobia and the salmonids, we found few differences between their Hb-O2 transport systems, suggesting conservation of this physiological trait across diverse teleost taxa.


Asunto(s)
Peces/fisiología , Oxígeno/fisiología , Perciformes/fisiología , Animales , Eritrocitos/metabolismo , Proteínas de Peces/metabolismo , Peces/sangre , Hemoglobinas/metabolismo , Cinética , Oxígeno/sangre , Perciformes/sangre , Salmonidae/sangre , Salmonidae/fisiología , Especificidad de la Especie
3.
Ecotoxicology ; 31(7): 1057-1067, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35982347

RESUMEN

Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.


Asunto(s)
Fluorocarburos , Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Fluorocarburos/toxicidad , Humanos , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
4.
Artículo en Inglés | MEDLINE | ID: mdl-33621645

RESUMEN

In this study, we investigated the effect of acute increases in temperature on cardiovascular function of mahi-mahi (Coryphaena hippurus). We also describe, for the first time, an artery that supplies the gastrointestinal tract that originates from the fourth branchial artery. We used vascular casting to verify the anatomical location of this unique celiaco-mesenteric artery. We predicted that blood flow in this vessel would be correlated with the digestive state of the animal. Increasing water temperature from 25.0 to 30.5 °C resulted in a linear increase in heart rate (fH) from 165 ± 4 beats∙min-1to 232 ± 7 beats∙min-1. Over this temperature range, fH strongly correlated with water temperature (R2 = 0.79). At 31 °C fH no longer correlated with water temperature, and at 34 °C fH had dropped to 114 ± 19 beats∙min-1. Furthermore, we found that mahi are capable of maintaining constant cardiac output over a temperature range from 25 to 31 °C. Cardiac function appeared to be compromised at temperatures >31 °C. In fed anesthetized fish, blood flow was pulsatile in the celiaco-mesenteric artery and was not in fasted fish. In fed fish, blood flow in the left celiaco-mesenteric artery was 1.99 ± 0.78 ml·min-1·kg-1 compared to the total cardiac output of 168.6 ± 12.7 ml·min-1·kg-1. The data suggest that mahi can differentially regulate gastric blood flow based on feeding state, which may explain the high digestive efficiency and very high growth rates of these pelagic predators.


Asunto(s)
Digestión , Corazón/fisiología , Perciformes/fisiología , Temperatura , Animales , Gasto Cardíaco , Perciformes/crecimiento & desarrollo
5.
Environ Sci Technol ; 54(21): 13579-13589, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138383

RESUMEN

Publicly available toxicological studies on wastewaters associated with unconventional oil and gas (UOG) activities in offshore regions are nonexistent. The current study investigated the impact of hydraulic fracturing-generated flowback water (HF-FW) on whole organism swimming performance/respiration and cardiomyocyte contractility dynamics in mahi-mahi (Coryphaena hippurus-hereafter referred to as "mahi"), an organism which inhabits marine ecosystems where offshore hydraulic fracturing activity is intensifying. Following exposure to 2.75% HF-FW for 24 h, mahi displayed significantly reduced critical swimming speeds (Ucrit) and aerobic scopes (reductions of ∼40 and 61%, respectively) compared to control fish. Additionally, cardiomyocyte exposures to the same HF-FW sample at 2% dilutions reduced a multitude of mahi sarcomere contraction properties at various stimulation frequencies compared to all other treatment groups, including an approximate 40% decrease in sarcomere contraction size and a nearly 50% reduction in sarcomere relaxation velocity compared to controls. An approximate 8-fold change in expression of the cardiac contractile regulatory gene cmlc2 was also seen in ventricles from 2.75% HF-FW-exposed mahi. These results collectively identify cardiac function as a target for HF-FW toxicity and provide some of the first published data on UOG toxicity in a marine species.


Asunto(s)
Fracking Hidráulico , Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Miocitos Cardíacos , Contaminación por Petróleo/análisis , Natación , Aguas Residuales , Agua , Contaminantes Químicos del Agua/toxicidad
6.
Dev Dyn ; 248(5): 337-350, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884004

RESUMEN

BACKGROUND: Mahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described. RESULTS: A comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development. CONCLUSION: Remarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm-water, active Teleost fishes.


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Perciformes/crecimiento & desarrollo , Animales , Conducta Animal , Domesticación , Peces , Larva/crecimiento & desarrollo , Fenotipo , Reproducción
7.
Environ Sci Technol ; 53(23): 14001-14009, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31702903

RESUMEN

The understanding of the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The Deepwater Horizon oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the habitat of many pelagic fish species. Yet, it is unknown whether highly migratory species, such as mahi-mahi (Coryphaena hippurus), might detect and avoid oil contaminated waters. We tested the ability of control and oil-exposed juvenile mahi-mahi (15-45 mm) to avoid two dilutions of crude oil in a two-channel flume. Control fish avoided the higher concentration (27.1 µg/L Σ50PAH), while oil-exposed (24 h, 18.0 µg/L Σ50PAH) conspecifics did not. Electro-olfactogram (EOG) data demonstrated that both control and oil-exposed (24 h, 14.5 µg/L Σ50PAH) juvenile mahi-mahi (27-85 mm) could detect crude oil as an olfactory cue and that oil-exposure did not affect the EOG amplitude or duration in response to oil or other cues. These results show that a brief oil exposure impairs the ability of mahi-mahi to avoid oil and suggests that this alteration likely results from injury to higher order central nervous system processing rather than impaired olfactory physiology.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Reacción de Prevención , Embrión no Mamífero , Golfo de México
8.
Environ Sci Technol ; 53(16): 9895-9904, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31343865

RESUMEN

Deepwater Horizon crude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi (Coryphaena hippurus). Cardiomyocytes directly exposed to oil exhibited reduced contractility over a range of environmentally relevant concentrations (2.8-12.9 µg l-1∑PAH). This reduction in contractility was most pronounced at higher stimulation frequencies, corresponding to the upper limits of previously measured in situ mahi heart rates. To better understand the mechanisms underlying impaired contractile function, electrophysiological studies were performed, which revealed oil exposure prolonged cardiomyocyte action potentials and disrupted potassium cycling (9.9-30.4 µg l-1∑PAH). This study is the first to measure cellular contractility in oil-exposed cardiomyocytes from a pelagic fish. Results from this study contribute to previously observed impairments to heart function and whole-animal exercise performance in mahi, underscoring the advantages of using an integrative approach in examining mechanisms of oil-induced cardiotoxicity in marine fish.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales
9.
Artículo en Inglés | MEDLINE | ID: mdl-29054806

RESUMEN

Migratory pelagic fish species, such as the mahi-mahi (Coryphaena hippurus), must balance numerous metabolic demands simultaneously in order to survive in a challenging oceanic environment. Energetic support for such demands comes from a variety of natural prey items in the wild and can come from manufactured pelletized feed in captivity. This study quantified postprandial metabolism, commonly referred to as specific dynamic action (SDA), over time in adult mahi-mahi (706±25g; 38±0.7cm FL) in response to satiation feeding using three different natural and manufactured diets. Results indicate that during satiation feeding the amount of food ingested is dictated by energy content rather than prey mass, regardless of moisture content of the diet. Ingested meal energy did not differ significantly across groups (473±45kJ), nor did the duration of SDA (36±2.1h). Satiation feeding levels ranged from 2.9-16.2% bodyweight depending on the diet. Peak SDA and SDA magnitude were both significantly decreased in response to dry pelletized diet compared to the natural forage diets, despite equivalent energy consumption. Swim performance and maximum metabolic rate were not impacted significantly in satiation fed fish compared to unfed fish, supporting the evidence that mahi-mahi are able to maintain multiple metabolic demands at one time without compromising performance.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Digestión , Ingestión de Energía , Metabolismo Energético , Perciformes/fisiología , Alimentación Animal , Animales , Acuicultura , Océano Atlántico , Conducta Animal , Decapodiformes , Peces , Florida , Consumo de Oxígeno , Perciformes/crecimiento & desarrollo , Periodo Posprandial , Distribución Aleatoria , Natación
10.
Artículo en Inglés | MEDLINE | ID: mdl-29559253

RESUMEN

Aplysia californica was hatchery-reared in two turbulence protocols intended to imitate the intermittent turbulence of the native habitat and to promote development of the foot muscle from the exercise of adhering to the substrate. Hatchery-reared animals in turbulence regimes were compared to siblings reared in quiet water, and to wild animals, using noninvasive assessments of the development of the foot muscle. The objective was to learn if the turbulence-reared phenotype mimicked laboratory-targeted aspects of the wild phenotype, that is, reflex behavior, swim tunnel performance, and resting oxygen consumption (MO2). No group exhibited different MO2. MO2 values for all of the compared groups of animals followed the power law, with an exponent of 0.69, consistent with this relationship throughout the animal kingdom. Turbulence-induced exercise did not affect the righting reflex or the tail withdrawal reflex, standard behavioral tests that involve the foot muscle, compared to quiet water-reared siblings. Wild individuals had significantly shorter time-to-right than all hatchery reared animals, however, wild animals did not perform better in flume tests. That turbulence-reared hatchery- or wild animals lacked superior flume performance suggests that this species may shelter from intertidal wave energy to remain near its optimal feeding areas.


Asunto(s)
Aplysia/fisiología , Acuicultura , Conducta Animal , Reflejo/fisiología , Natación , Animales , Estudios de Cohortes , Músculos/fisiología , Consumo de Oxígeno/fisiología , Fenotipo
11.
Environ Sci Technol ; 51(24): 14390-14396, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29132212

RESUMEN

Aqueous crude oil spills expose fish to varying concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs), which can have lethal and sublethal effects. The heart is particularly vulnerable in early life stages, as PAH toxicity causes developmental cardiac abnormalities and impaired cardiovascular function. However, cardiac responses of juvenile and adult fish to acute oil exposure remain poorly understood. We sought to assess cardiac function in a pelagic fish species, the cobia (Rachycentron canadum), following acute (24 h) exposure to two ecologically relevant levels of dissolved PAHs. Cardiac power output (CPO) was used to quantify cardiovascular performance using an in situ heart preparation. Cardiovascular performance was varied using multiple concentrations of the ß-adrenoceptor agonist isoproterenol (ISO) and by varying afterload pressures. Oil exposure adversely affected CPO with control fish achieving maximum CPO's (4 mW g-1 Mv) greater than that of oil-exposed fish (1 mW g-1 Mv) at ISO concentrations of 1 × 10-6 M. However, the highest concentration of ISO (1 × 10-5 M) rescued cardiac function. This indicates an interactive effect between oil-exposure and ß-adrenergic stimulation and suggests if animals achieve very large increases in ß-adrenergic stimulation it could play a compensatory role that may mitigate some adverse effects of oil-exposure in vivo.


Asunto(s)
Adrenérgicos , Corazón/efectos de los fármacos , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos , Animales , Peces , Perciformes , Petróleo , Contaminantes Químicos del Agua
12.
Proc Natl Acad Sci U S A ; 111(15): E1510-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706825

RESUMEN

The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.


Asunto(s)
Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/patología , Cardiopatías/veterinaria , Corazón/efectos de los fármacos , Contaminación por Petróleo/historia , Petróleo/toxicidad , Atún , Análisis de Varianza , Animales , Embrión no Mamífero/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Golfo de México , Corazón/crecimiento & desarrollo , Cardiopatías/inducido químicamente , Cardiopatías/patología , Historia del Siglo XXI , Procesamiento de Imagen Asistido por Computador , Hidrocarburos Policíclicos Aromáticos/análisis
13.
Environ Sci Technol ; 50(4): 2011-7, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26784438

RESUMEN

The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions barrels of crude oil into the Gulf of Mexico. Photoinduced toxicity following coexposure to ultraviolet (UV) radiation is one mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Mahi-mahi (Coryphaena hippurus), an important fishery resource, have positively buoyant, transparent eggs. These characteristics may result in mahi-mahi embryos being at particular risk from photoinduced toxicity. The goal of this study was to determine whether exposure to ultraviolet radiation as natural sunlight enhances the toxicity of crude oil to embryonic mahi-mahi. Mahi-mahi embryos were exposed to several dilutions of water accommodated fractions (WAF) from slick oil collected during the 2010 spill and gradations of natural sunlight in a fully factorial design. Here, we report that coexposure to natural sunlight and WAF significantly reduced percent hatch in mahi-mahi embryos. Effect concentrations of PAH in WAF were within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These data suggest that laboratory toxicity tests that do not include UV may underestimate the toxicity of oil spills to early lifestage fish species.


Asunto(s)
Ecotoxicología/métodos , Perciformes/embriología , Petróleo/toxicidad , Rayos Ultravioleta/efectos adversos , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , México , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Luz Solar
14.
Environ Sci Technol ; 50(14): 7842-51, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27348429

RESUMEN

The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.


Asunto(s)
Larva , Petróleo/toxicidad , Animales , Perciformes , Contaminación por Petróleo , Contaminantes Químicos del Agua
15.
Environ Sci Technol ; 48(12): 7053-61, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24857158

RESUMEN

The Deepwater Horizon incident likely resulted in exposure of commercially and ecologically important fish species to crude oil during the sensitive early life stages. We show that brief exposure of a water-accommodated fraction of oil from the spill to mahi-mahi as juveniles, or as embryos/larvae that were then raised for ∼25 days to juveniles, reduces their swimming performance. These physiological deficits, likely attributable to polycyclic aromatic hydrocarbons (PAHs), occurred at environmentally realistic exposure concentrations. Specifically, a 48 h exposure of 1.2 ± 0.6 µg L(-1) ΣPAHs (geometric mean ± SEM) to embryos/larvae that were then raised to juvenile stage or a 24 h exposure of 30 ± 7 µg L(-1) ΣPAHs (geometric mean ± SEM) directly to juveniles resulted in 37% and 22% decreases in critical swimming velocities (Ucrit), respectively. Oil-exposed larvae from the 48 h exposure showed a 4.5-fold increase in the incidence of pericardial and yolk sac edema relative to controls. However, this larval cardiotoxicity did not manifest in a reduced aerobic scope in the surviving juveniles. Instead, respirometric analyses point to a reduction in swimming efficiency as a potential alternative or contributing mechanism for the observed decreases in Ucrit.


Asunto(s)
Embrión no Mamífero/fisiología , Perciformes/embriología , Perciformes/fisiología , Contaminación por Petróleo , Petróleo/toxicidad , Natación/fisiología , Pruebas de Toxicidad Aguda , Aerobiosis/efectos de los fármacos , Animales , Metabolismo Basal/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Fraccionamiento Químico , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Larva/fisiología , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
16.
Sci Total Environ ; 916: 170044, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244625

RESUMEN

Rising CO2 emissions have heightened the necessity for increased understanding of Earth's carbon cycle to predict future climates. The involvement of marine planktonic species in the global carbon cycle has been extensively studied, but contributions by marine fish remain poorly characterized. Marine teleost fishes produce carbonate minerals ('ichthyocarbonates') within the lumen of their intestines which are excreted at significant rates on a global scale. However, we have limited understanding of the fate of excreted ichthyocarbonate. We analyzed ichthyocarbonate produced by three different marine teleosts for mol%MgCO3 content, size, specific gravity, and dissolution rate to gain a better understanding of ichthyocarbonate fate. Based on the species examined here, we report that 75 % of ichthyocarbonates are ≤0.91 mm in diameter. Analyses indicate high Mg2+ content across species (22.3 to 32.3 % mol%MgCO3), consistent with previous findings. Furthermore, ichthyocarbonate specific gravity ranged from 1.23 to 1.33 g/cm3, and ichthyocarbonate dissolution rates varied among species as a function of aragonite saturation state. Ichthyocarbonate sinking rates and dissolution depth were estimated for the Atlantic, Pacific, and Indian ocean basins for the three species examined. In the North Atlantic, for example, ~33 % of examined ichthyocarbonates are expected to reach depths exceeding 200 m prior to complete dissolution. The remaining ~66 % of ichthyocarbonate is estimated to dissolve and contribute to shallow water alkalinity budgets. Considering fish biomass and ichthyocarbonate production rates, our results support that marine fishes are critical to the global carbon cycle, contributing to oceanic alkalinity budgets and thereby influencing the ability of the oceans to neutralize atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Ecosistema , Animales , Dióxido de Carbono/análisis , Gravedad Específica , Océanos y Mares , Carbonatos , Peces , Ciclo del Carbono , Océano Índico , Agua de Mar , Carbono
17.
Sci Total Environ ; 916: 169895, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215854

RESUMEN

Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.


Asunto(s)
Carbono , Carbonatos , Animales , Humanos , Carbono/metabolismo , Carbonatos/química , Agua de Mar/química , Isótopos de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Peces/metabolismo , Ciclo del Carbono , Proteínas de Transporte de Membrana/metabolismo , Océanos y Mares
18.
Toxins (Basel) ; 15(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37368698

RESUMEN

Zearalenone (ZEA) is a mycotoxin, commonly found in agricultural products, linked to adverse health impacts in humans and livestock. However, less is known regarding effects on fish as both ecological receptors and economically relevant "receptors" through contamination of aquaculture feeds. In the present study, a metabolomics approach utilizing high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was applied to intact embryos of zebrafish (Danio rerio), and two marine fish species, olive flounder (Paralichthys olivaceus) and yellowtail snapper (Ocyurus chrysurus), to investigate the biochemical pathways altered by ZEA exposure. Following the assessment of embryotoxicity, metabolic profiling of embryos exposed to sub-lethal concentrations showed significant overlap between the three species and, specifically, identified metabolites linked to hepatocytes, oxidative stress, membrane disruption, mitochondrial dysfunction, and impaired energy metabolism. These findings were further supported by analyses of tissue-specific production of reactive oxygen species (ROS) and lipidomics profiling and enabled an integrated model of ZEA toxicity in the early life stages of marine and freshwater fish species. The metabolic pathways and targets identified may, furthermore, serve as potential biomarkers for monitoring ZEA exposure and effects in fish in relation to ecotoxicology and aquaculture.


Asunto(s)
Lenguado , Zearalenona , Animales , Humanos , Zearalenona/toxicidad , Pez Cebra , Lenguado/metabolismo , Espectroscopía de Resonancia Magnética , Estrés Oxidativo
19.
Sci Total Environ ; 803: 149858, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482148

RESUMEN

Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.


Asunto(s)
Ecosistema , Pez Cebra , Animales , Humanos , Espectroscopía de Resonancia Magnética , Toxinas Marinas , Metabolómica , Oxocinas
20.
Sci Total Environ ; 806(Pt 3): 150542, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582874

RESUMEN

Pelagic fish embryos are thought to float in or near surface waters for the majority of their development and are presumed to have little to no control over their mobility, rendering these embryos at high risk for damages associated with surface stressors such as ultraviolet radiation (UVR). We recently challenged these long-standing paradigms by characterizing a potential mechanism of stressor avoidance in early-life stage mahi-mahi (Coryphaena hippurus) in which embryos sense external cues, such as UVR, and modify their buoyancy to reduce further exposure. It is unknown whether embryos of other marine fish with pelagic spawning strategies have similar capabilities. To fill this knowledge gap, we investigated buoyancy change in response to UVR in three additional species of marine fish that utilize a pelagic spawning strategy: yellowfin tuna (Thunnus albacares), red snapper (Lutjanus campechanus), and cobia (Rachycentron canadum). Embryos of all three species displayed increased specific gravity and loss of buoyancy after exposures to environmentally relevant doses of UVR, a response that may be ubiquitous to fish with pelagic embryos. To gain further insight into this response, we investigated recovery of buoyancy, oxygen consumption, energy depletion, and photolyase induction in response to UVR exposures in at least one of the three species listed above.


Asunto(s)
Perciformes , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Embrión no Mamífero/química , Hidrocarburos Policíclicos Aromáticos/análisis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda