Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Langmuir ; 36(42): 12451-12459, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32975124

RESUMEN

We have developed a method for predicting the solvation contribution to solid-liquid interfacial tension (IFT) based on density functional theory and the implicit solvent model COSMO-RS. Our method can be used to predict wetting behavior for a solid surface in contact with two liquids. We benchmarked our method against measurements of contact angle from water-in-oil on silica wafers and a range of self-assembled monolayers (SAMs) with different compositions, ranging from oil-wet to water-wet. We also compared our predictions to literature data for wetting of a polydimethylsilane surface. By explicitly including deprotonation for silica surfaces and carboxylic acid SAMs, very good agreement was obtained with experimental data for nearly all surfaces. Poor agreement was found for amine-terminated SAMs, which could be the result of both method and model insufficiencies and impurities known to be present for such surfaces. Solid-liquid IFT cannot be measured directly, making predictions such as from our method all the more important.

2.
Langmuir ; 35(50): 16669-16678, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31714788

RESUMEN

Assessment of the risks and environmental impacts of carbon geosequestration requires knowledge about the wetting behavior of mineral surfaces in the presence of CO2 and the pore fluids. In this context, the interfacial tension (IFT) between CO2 and the aqueous fluid and the contact angle, θ, with the pore mineral surfaces are the two key parameters that control the capillary pressure in the pores of the candidate host rock. Knowledge of these two parameters and their dependence on the local conditions of pressure, temperature, and salinity is essential for the correct prediction of structural and residual trapping. We have performed classical molecular dynamics simulations to predict the CO2-water IFT and the CO2-water-calcite contact angle. The IFT results are consistent with previous simulations, where simple point charge water models have been shown to underestimate the water surface tension, thus affecting the simulated IFT values. When combined with the EPM2 CO2 model, the SPC/Fw water model indeed underestimates the IFT in the low-pressure region at all temperatures studied. On the other hand, at high pressure and low temperature, the IFT is overestimated by ∼5 mN/m. Literature data regarding the CO2/water/calcite contact angle on calcite are contradictory. Using our new set of force field parameters, we performed NVT simulations at 323 K and 20 MPa to calculate the contact angle of a water droplet on the calcite {10.4} surface in a CO2 atmosphere. We performed simulations for both spherical and cylindrical droplet configurations for different initial radii to study the size dependence of the water contact angle on calcite in the presence of CO2. Our results suggest that the contact angle of a cylindrical droplet, is independent of droplet size, for droplets with a radius of 50 Å or more. On the contrary, spherical droplets make a contact angle that is strongly influenced by their size. At the largest size explored in this study, both spherical and cylindrical droplets converge to the same contact angle, 38°, indicating that calcite is strongly wetted by water.

3.
Langmuir ; 35(49): 16153-16163, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31722180

RESUMEN

Interactions between organic molecules in aqueous environments, whether in the fluid phase or adsorbed on solids, are often affected by the cations present in the solution. We investigated, at nanometer scale, how surface carboxylate interactions are influenced by dissolved divalent cations: Mg2+, Ca2+, Sr2+, and Ba2+. Self-assembled monolayer (SAM) surfaces with exposed terminations of alkyl, -CH3, carboxylate, -COO- , or dicarboxylate, -DiCOO-, were deposited on gold-coated tips and substrates. We used atomic force microscopy (AFM), in chemical force mapping (CFM) mode, to measure adhesion forces between various combinations of SAMs on the tip and substrate, in solutions of 0.5 M NaCl, that contained 0.012 M of one of the divalent cations. The type of cation, the number of carboxyl groups that interact, and their structure on the SAM influenced adhesion between the surfaces. The effect of the reference solution, which only contains Na+ cations, on adhesion force was mainly attributed to van der Waals and hydrophobic forces, explaining the lower force in systems that are more hydrophilic, i.e., -COO--COO-, and higher force for more hydrophobic systems. For charged surfaces, i.e., -COO- and -DiCOO-, in divalent cation solutions results were consistent with ion bridging. The inclusion of a hydrophobic surface, i.e., the -CH3-COO- or -CH3-DiCOO- system, decreased the possibility for strong cation bridging with the charged surface, resulting in lower adhesion. For systems including -COO-, the adhesion force series followed the inverse cation hydrated radius trend (Na+ ≈ Mg2+ < Sr2+ < Ca2+ < Ba2+) whereas -DiCOO- was responsible for lower adhesion force and modified trends, depending on the corresponding surface in the system. Differences in force magnitude between the monolayers were correlated with lower charge availability on the -DiCOO- surface as a result of fewer active sites, probably because of the tendency of exposed malonate surface groups to interact between them, as well as high rigidity, resulting from the molecule structure. The characteristic response of the -DiCOO- surface in solutions of Sr2+ and Ca2+ was correlated with possible malonate complexation modes. Comparison with previous studies suggested that the strong response of a -DiCOO- surface to Sr2+ resulted from bidentate chelation, whereas Ca2+ response was attributed to alpha-mode association to malonate.

4.
Langmuir ; 34(24): 7011-7020, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792031

RESUMEN

The interfacial free energy of a solid, which determines its adsorption properties, depends on interactions between the surface and the fluid. A change in surface composition can completely change the behavior of the solid. Decades of work have explored adsorption and its effects at solid-fluid interfaces from the macroscopic perspective and using molecular modeling, so the concept of the electric double layer (EDL) is well established in the community. However, direct, molecular level, experimental observations of the composition within the interface region, and its change with time and conditions, are not abundant. We used cryogenic X-ray photoelectron spectroscopy (cryoXPS) to observe the composition in the clay mineral-solution interface region as a function of bulk solution composition, on illite and chlorite in MgCl2 and CaCl2 electrolytes, over a range of concentrations (1-125 mM), in situ, on vitrified samples. These samples were prepared from very thin smears of centrifuged wet paste that were instantaneously chilled to liquid N2 temperature. They preserved the adsorbed solution in its amorphous state, maintaining the location of the ions and water with respect to the solid, without the disruption that occurs during drying or the rearrangement that results as water crystallizes during freezing. With decreasing ionic strength, we could directly monitor the loss of negative charge in the interface region, producing an anion deficiency, as predicted by theory. The Cl-/Me2+ ratio dropped below 1 for chlorite at 12-25 mM MeCl2 and for illite at 75-100 mM. In addition to better understanding of clay mineral behavior in solution, this work demonstrates that only those clay minerals where surface charge density is the same or lower than that for chlorite contribute to a low salinity enhanced oil recovery response (LS EOR). This explains many of the contradictory results from studies about the role of clay minerals in LS EOR.

5.
Langmuir ; 34(35): 10254-10261, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30085678

RESUMEN

Interactions between mineral surfaces and organic molecules are fundamental to life processes. The presence of cations in natural environments can change the behavior of organic compounds and thus alter the mineral-organic interfaces. We investigated the influence of Na+, Mg2+, Ca2+, Sr2+, and Ba2+ on the interaction between two models, self-assembled monolayers, that were tailored to have hydrophobic -CH3 or hydrophilic -COO(H) terminations. Atomic force microscopy in chemical force mapping mode, where the tips were functionalized with the same terminations, was used to measure adhesion forces between the tip and substrate surfaces, to gather fundamental information about the role of these cations in the behavior of organic compounds and the surfaces where they adsorb. Adhesion force between hydrophobic surfaces in 0.5 M NaCl solutions that contained 0.012 M divalent cations did not change, regardless of the ionic potential, that is, the charge per unit radius, of the cation. For systems where one or the other surface was functionalized with carboxylate, -COO(H), mostly in its deprotonated form, -COO-, a reproducible change in the adhesion force was observed for each of the ions. The trend of increasing adhesion force followed the pattern: Na+ ≈ Mg2+ < Sr2+ < Ca2+ < Ba2+, suggesting that ionic potential, thus hydrated radius, controls the interaction. The presence of a -CH3 surface in the asymmetric system leads to lower adhesion forces than in the hydrophilic system, whereas the ionic trend remains the same. Although specific ion effects are felt in both systems, the lower adhesion force in the asymmetric system, compared with the hydrophilic system, implies that the -CH3 surface plays an important role.

6.
Phys Chem Chem Phys ; 20(10): 7140-7147, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29479597

RESUMEN

We performed density functional theory calculations to investigate the effect of solvation and temperature on the adsorption of small organic molecules on calcite. The Conductor like Screening Model for Real Solvents (COSMO-RS) solvation model was used to describe a multicomponent mixture consisting of both hydrophobic and hydrophilic phases. The results demonstrate that the combination of solvation and temperature significantly influences adsorption, with the effect of temperature dominating over the effect of solvation. At 25 °C, carboxylic acids and methanol are stable on calcite with free energy of adsorption <0 in the hydrophobic phase. None of the molecules considered in this study remain on the surface in the hydrophilic phase.

7.
Phys Chem Chem Phys ; 20(25): 17226-17233, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29900457

RESUMEN

An understanding of the mechanisms that control the adsorption of organic molecules on clay minerals is of interest in several branches of science and industry. Oil production using low salinity injection fluids can increase yields by as much as 40% over standard injection with seawater or formation water. The mechanism responsible for the low salinity response is still debated, but one hypothesis is a change in pore surface wettability. Organic contamination in soil and drinking water aquifers is a challenge for municipal water suppliers and for agriculture. A better understanding is needed for how mineral species, solution composition and pH affect the desorption of low molecular weight organic ligands from clay minerals and consequently their wettability. We used X-ray photoelectron spectroscopy under cryogenic conditions to investigate the in situ composition in the mineral-solution interface region in a series of experiments with a range of pH and ion concentrations. We demonstrate that both chlorite and kaolinite release organic molecules under conditions relevant for low salinity water flooding. This release increases with a higher solution pH but is only slightly affected by the character of the organic ligand. This is consistent with the observation that low salinity enhanced oil recovery correlates with the presence of chlorite and kaolinite. Our results indicate that the pore surface charge and salinity of formation water and injection fluids are key parameters in determining the low salinity response. In general, our results imply that clay mineral surface charge influences the composition in the interface through an affinity for organic molecules.

8.
Environ Sci Technol ; 51(14): 7982-7991, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28622466

RESUMEN

When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.


Asunto(s)
Dióxido de Carbono , Contaminantes del Agua/química , Mar del Norte , Porosidad , Solubilidad , Agua
9.
Angew Chem Int Ed Engl ; 55(37): 11086-90, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27532505

RESUMEN

In spite of decades of research, mineral growth models based on ion attachment and detachment rates fail to predict behavior beyond a narrow range of conditions. Here we present a microkinetic model that accurately reproduces calcite growth over a very wide range of published experimental data for solution composition, saturation index, pH and impurities. We demonstrate that polynuclear complexes play a central role in mineral growth at high supersaturation and that a classical complexation model is sufficient to reproduce measured rates. Dehydration of the attaching species, not the mineral surface, is rate limiting. Density functional theory supports our conclusions. The model provides new insights into the molecular mechanisms of mineral growth that control biomineralization, mineral scaling and industrial material synthesis.

10.
Langmuir ; 31(13): 3847-53, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25790337

RESUMEN

Molecular dynamics (MD) simulations were used to explore adsorption on calcite, from a 1:1 mixture of ethanol and water, on planar {10.4} and stepped, i.e. vicinal, surfaces. Varying the surface geometry resulted in different adsorption patterns, which would directly influence the ability of ethanol to control calcite crystal growth, dissolution, and adsorption/desorption of other ions and molecules. Ethanol forms a well-ordered adsorbed layer on planar faces and on larger terraces, such as between steps and defects, providing little chance for water, with its weaker attachment, to displace it. However, on surfaces with steps, adsorption affinity depends on the length of the terraces between the steps. Long terraces allow ethanol to form a well-ordered, hydrophobic layer, but when step density is high, ethanol adsorption is less ordered, allowing water to associate at and near the steps and even displacing pre-existing ethanol. Water adsorbed at steps forms mass transport pathways between the bulk solution and the solid surface. Our simulations confirm the growth inhibiting properties of ethanol, also explaining how certain crystal faces are more stabilized because of their surface geometry. The -O(H) functional group on ethanol forms tight bonds with calcite; the nonpolar, -CH3 ends, which point away from the surface, create a hydrophobic layer that changes surface charge, thus wettability, and partly protects calcite from precipitation and dissolution. These tricks could easily be adopted by biomineralizing organisms, allowing them to turn on and off crystal growth. They undoubtedly also play a role in the wetting properties of mineral surfaces in commercial CaCO3 manufacture, oil production, and contamination remediation.

11.
Phys Chem Chem Phys ; 17(33): 21432-41, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26220291

RESUMEN

The interaction of aromatic compounds with various ions in aqueous solutions plays a role in a number of fields, as diverse as protein folding and enhanced oil recovery, among others. Therefore, we have investigated the effect of the four electrolytes, KCl, NaCl, MgCl2 and CaCl2, on the hydrophobic interaction of benzene self-assembled monolayers. Using the jump to contact phenomenon of an atomic force microscope (AFM) tip as an indicator of attractive forces between the surfaces of a sample and the tip, we discovered lower frequencies in the snap in as well as narrower distributions for the snap in distance for the monovalent ions, especially for K(+), compared with the behaviour for the divalent ions. These observations are explained by the accumulation of charge at the surface by cation-π interactions and an influence of the ions on the formation of capillaries that bridge the tip to the surface. Bridging capillaries, i.e. nanometre scale gas bubbles, are some of the factors contributing to the long range hydrophobic interaction. The results demonstrate how ions influence the attraction of hydrophobic entities in aqueous solutions.

12.
Phys Chem Chem Phys ; 17(5): 3490-6, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25533590

RESUMEN

A clearer understanding of calcite interactions with organic molecules would contribute to a range of fields including harnessing the secrets of biomineralisation where organisms produce hard parts, increasing oil production from spent reservoirs, remediating contaminated soils and drinking water aquifers and improving manufacturing methods for industrial products such as pigments, soft abrasives, building materials and optical devices. Biomineralisation by some species of blue green algae produces beautifully elaborate platelets of calcite where the individual crystals are of nanometer scale. Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface.


Asunto(s)
Alcoholes/química , Carbonato de Calcio/química , Adsorción , Etano/química , Etanol/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Espectroscopía de Fotoelectrones , Polisacáridos/química , Propiedades de Superficie , Agua/química
13.
Langmuir ; 30(21): 6129-33, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24823264

RESUMEN

We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid interface, and into the second layer of the solid. This information can be used as an indicator for cation substitution in the bulk phase, such as for the uptake of toxic metals from the environment and the growth of secondary phases. In both the surface and in the second layer, Ni(2+), Cd(2+), and Pb(2+) substitute exothermically and Sr(2+) substitutes endothermically. Our results agree with published experimental data that demonstrate trace metal coprecipitation with calcite as a sink for Ni(2+), Cd(2+), and Pb(2+), whereas Sr(2+) has a distribution constant significantly smaller than 1. Ni(2+) substitution is favored at the mineral-fluid interface compared with bulk substitution, which also agrees with experimental data. Our results predict that Ni(2+), Cd(2+), and Pb(2+) form a stable solid solution with calcite. Successful prediction of the experimental results gives us confidence in our ability to predict the divalent cation preference for surfaces rather than for sites within the bulk crystal structure, which cannot be directly derived from experiment.

14.
Langmuir ; 30(22): 6437-45, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24823316

RESUMEN

We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.

15.
Langmuir ; 30(30): 9115-22, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25003588

RESUMEN

Interactions between cations and organic molecules are found throughout nature, from the functionality and structure of proteins in humans and animals to the exchange of ions in minerals in soil and oil reservoirs with the fluid phases. We have explored the behavior of the s-block elements that are most common in the natural world, namely, Na(+), K(+), Mg(2+), and Ca(2+). Specifically, we investigated how these ions affect the interactions between surfaces covered by self-assembled monolayers (SAMs) terminated with benzene molecules. We used a flat oxidized silicon substrate and an atomic force microscopy (AFM) tip that were both functionalized with 11-phenoxyundecane-1-thiol and measured the adhesion force between them in solutions of each of the four chloride salts. We observed that the adhesion increased in the order of the Hofmeister series: K(+) < Na(+) ≈ Mg(2+) < Ca(2+). Supplementary evidence from X-ray photoelectron spectroscopy (XPS) allowed us to conclude that K(+) binds in the benzene layers, creating a positive surface charge on the benzene-covered surfaces, thus leading to lower adhesion in KCl solutions than in pure water. Evidence suggested that Ca(2+) does not bind to the surfaces but forms bridges between the layers, leading to higher adhesion than in pure water. In Na(+) and Mg(2+) solutions, adhesion is quite similar to that in pure water, indicating a lack of interaction between these two ions and the surfaces, or at least that the interaction is too weak to be detected by our measurements. The results of our studies clearly show that even a nonpolar, hydrophobic molecule, such as benzene, has a role to play in the behavior of aqueous solutions and that it interacts differently depending on which ions are present. Even ions from the same column in the periodic table behave differently.

16.
Langmuir ; 30(48): 14476-85, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25390823

RESUMEN

The interactions between mineral surfaces and organic molecules in water control many processes in nature and in the production of modern materials. To improve the understanding of fluid-surface interactions, we investigated the interface behavior of quartz and muscovite, a model for clay minerals, in aqueous solutions where the pH and composition were controlled. We used atomic force microscopy (AFM) in chemical force mapping (CFM) mode to measure adhesion using tips functionalized with alkyl, -CH3. By combining adhesion forces measured as a function of pH, with data from streaming potential experiments and DLVO calculations, we were able to determine the surface charge density. We observed increased adhesion between the mineral surface and the hydrophobic tips as the contact time increased from 7 ms to ∼2 s. The diffusion of dissolved ions takes time, and density functional theory (DFT) calculations did not indicate a strong hydration of the mineral surfaces. Therefore, we interpret that the loss of ions from the confined space between the tip and sample is a likely explanation of the correlation between the dwell time and adhesion. The maximum adhesion increase with dwell time for muscovite, i.e., 400 ± 77 pN, was considerably larger than for quartz, 84 ± 15 pN, which fits with the different surface structure and composition of the two minerals. We propose two mechanisms to explain these results: (1) cations that are structured in the solution and on the surface remain associated at the tip-sample interface initially but diffuse away during extended contact time and (2) adventitious carbon, the organic material that comes spontaneously from air and solution, can diffuse to the tip-sample interface during contact. This material decreases the surface energy by aggregating near the alkyl tip and increases adhesion between the tip and sample.

17.
Langmuir ; 30(29): 8741-50, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24988276

RESUMEN

We investigated the adhesion of two functional groups to α-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil, oil recovery, and fabricating complicated nanomaterials, and there have been claims that organic compound-clay mineral interaction created the ordering that is necessary for the genesis of life. In many organisms, interaction between organic molecules and biominerals makes it possible to control the growth of bones, teeth, and shells. Adhesion of carboxylic acid, -COO(H), and pyridine, -C5H5N(H(+)), on the {0001} plane of α-alumina wafers has been investigated with atomic force microscopy (AFM) in chemical force mapping (CFM) mode. Both functional groups adhered to α-alumina in deionized water at pH < 5, and adhesion decreased as NaCl or CaCl2 concentration increased. X-ray photoelectron spectroscopy (XPS) showed that Na(+) and Ca(2+) adsorbed to the α-alumina surface at pH < 5, decreasing surface interaction with the carboxylic acid and pyridine groups. We interpret the results as evidence that the tips adhere to alumina through hydrogen bonding when only water is present. In solutions containing NaCl and CaCl2, cations are adsorbed but Cl(-) is not. When NaCl solutions are replaced by CaCl2, Ca(2+) replaces Na(+), but rinsing with ultrapure deionized water (pH 5.6) could not restore the original protonated surface. The results demonstrate that the alumina surface at pH 3 has a higher affinity for inorganic cations than for -COO(H) or -C5H5N(H(+)), in spite of the known positive surface charge of α-alumina {0001} wafers. These results demonstrate that solution salinity plays an important role in surface properties, controlling surface tension (i.e., contact angle) and adsorption affinity on α-alumina and, by analogy, on clay minerals.


Asunto(s)
Óxido de Aluminio/química , Cloruro de Calcio/química , Ácidos Carboxílicos/química , Piridinas/química , Cloruro de Sodio/química , Agua/química , Adsorción , Silicatos de Aluminio/química , Arcilla , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Salinidad , Tensión Superficial , Termodinámica
18.
Inorg Chem ; 53(17): 8887-94, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25144528

RESUMEN

Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain monovalent cations, using X-ray photoelectron spectroscopy and synchrotron X-ray scattering. For material synthesized with Na(+), K(+), Rb(+), or Cs(+), interlayer thickness derived from basal plane spacings correlates with the radius of the monovalent cation. In addition, sequential washing of the materials with water showed that Na(+) and K(+) were structurally fixed in the interlayer, whereas Rb(+) and Cs(+) could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both anions and cations: e.g., radioactive Cs.

19.
J Phys Chem A ; 118(45): 10720-9, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25318063

RESUMEN

We have measured infrared spectra from several types of calcite: chalk, freshly cultured coccoliths produced by three species of algae, natural calcite (Iceland Spar), and two types of synthetic calcite. The most intense infrared band, the asymmetric carbonate stretch vibration, is clearly asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory for bulk calcite and several calcite surface systems allows for assignment of the infrared bands. The two peaks that make up the asymmetric carbonate stretch band come from the bulk (narrow Lorenzian) and from a combination of two effects (broad Gaussian): the surface or near surface of calcite and line broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also allowed us to quantify the amount of polysaccharides associated with the coccoliths. The amount of polysaccharides left in chalk, demonstrated to be present in other work, is below the IR detection limit, which is 0.5% by mass.


Asunto(s)
Carbonato de Calcio/química , Haptophyta/química , Simulación por Computador , Microscopía Electrónica de Rastreo , Modelos Químicos , Mar del Norte , Espectrofotometría Infrarroja , Vibración , Agua/química , Difracción de Rayos X
20.
Proc Natl Acad Sci U S A ; 108(21): 8571-6, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21551094

RESUMEN

Coccoliths are micrometer scale shields made from 20 to 60 individual calcite (CaCO(3)) crystals that are produced by some species of algae. Currently, coccoliths serve as an important sink in the global carbon cycle, but decreasing ocean pH challenges their stability. Chalk deposits, the fossil remains of ancient algae, have remained remarkably unchanged by diagenesis, the process that converts sediment to rock. Even after 60 million years, the fossil coccolith crystals are still tiny (< 1 µm), compared with inorganically produced calcite, where one day old crystals can be 10 times larger, which raises the question if the biogenic nature of coccolith calcite gives it different properties than inorganic calcite? And if so, can these properties protect coccoliths in CO(2) challenged oceans? Here we describe a new method for tracking dissolution of individual specimens, at picogram (10(-12) g) resolution. The results show that the behavior of modern and fossil coccoliths is similar and both are more stable than inorganic calcite. Organic material associated with the biogenic calcite provides the explanation. However, ancient and modern coccoliths, that resist dissolution in Ca-free artificial seawater at pH > 8, all dissolve when pH is 7.8 or lower. Ocean pH is predicted to fall below 7.8 by the year 2100, in response to rising CO(2) levels. Our results imply that at these conditions the advantages offered by the biogenic nature of calcite will disappear putting coccoliths on algae and in the calcareous bottom sediments at risk.


Asunto(s)
Carbonato de Calcio/química , Dióxido de Carbono/química , Huella de Carbono , Monitoreo del Ambiente/métodos , Agua de Mar/química , Ciclo del Carbono , Cristalización , Fósiles , Sedimentos Geológicos , Concentración de Iones de Hidrógeno , Océanos y Mares , Solubilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda