Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Physiol ; 148(4): 1857-67, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18835995

RESUMEN

Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.


Asunto(s)
Adenina/metabolismo , Arabidopsis/metabolismo , Zeatina/metabolismo , Adenina/farmacología , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Células Cultivadas , Citocininas/metabolismo , Germinación/efectos de los fármacos , Cinética , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/metabolismo , Plantones/metabolismo , Transducción de Señal
2.
Planta ; 226(4): 805-13, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17476526

RESUMEN

The development of seeds depends on the import of carbohydrates and amino acids supplied by the maternal tissue via the phloem. Several amino acid transporters have been reported to be expressed during seed and silique development in Arabidopsis thaliana (L.) Heynh. Here we show that mutants lacking the high affinity amino acid permease 8 (At1g10010) display a severe seed phenotype. The overall number of seeds and the number of normally developed seed is reduced by approximately 50% in siliques of the Ataap8 T-DNA insertion mutant. This result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach. The seed phenotype is correlated with a specifically altered amino acid composition of young siliques. Aspartic acid and glutamic acid are significantly reduced in young siliques of the mutants. In correlation with the fact that AAP8 is a high affinity transporter for acidic amino acids, translocation of (14)C-labelled aspartate fed via the root system to seeds of the mutants is reduced. AAP8 plays a crucial role for the uptake of amino acids into the endosperm and supplying the developing embryo with amino acids during early embryogenesis.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Sistemas de Transporte de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Aspártico/metabolismo , Eliminación de Gen , Nitrógeno/metabolismo , Semillas/metabolismo
3.
Plant Cell ; 18(8): 1931-46, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16816136

RESUMEN

Amino acid transport in plants is mediated by at least two large families of plasma membrane transporters. Arabidopsis thaliana, a nonmycorrhizal species, is able to grow on media containing amino acids as the sole nitrogen source. Arabidopsis amino acid permease (AAP) subfamily genes are preferentially expressed in the vascular tissue, suggesting roles in long-distance transport between organs. We show that the broad-specificity, high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER1 (LHT1), an AAP homolog, is expressed in both the rhizodermis and mesophyll of Arabidopsis. Seedlings deficient in LHT1 cannot use Glu or Asp as sole nitrogen sources because of the severe inhibition of amino acid uptake from the medium, and uptake of amino acids into mesophyll protoplasts is inhibited. Interestingly, lht1 mutants, which show growth defects on fertilized soil, can be rescued when LHT1 is reexpressed in green tissue. These findings are consistent with two major LHT1 functions: uptake in roots and supply of leaf mesophyll with xylem-derived amino acids. The capacity for amino acid uptake, and thus nitrogen use efficiency under limited inorganic N supply, is increased severalfold by LHT1 overexpression. These results suggest that LHT1 overexpression may improve the N efficiency of plant growth under limiting nitrogen, and the mutant analyses may enhance our understanding of N cycling in plants.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/fisiología , Aminoácidos/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Protoplastos/metabolismo , Levaduras/genética
4.
Plant Physiol ; 139(3): 1255-67, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16215225

RESUMEN

The monogenic recessive maize (Zea mays) mutant rootless with undetectable meristems 1 (rum1) is deficient in the initiation of the embryonic seminal roots and the postembryonic lateral roots at the primary root. Lateral root initiation at the shoot-borne roots and development of the aerial parts of the mutant rum1 are not affected. The mutant rum1 displays severely reduced auxin transport in the primary root and a delayed gravitropic response. Exogenously applied auxin does not induce lateral roots in the primary root of rum1. Lateral roots are initiated in a specific cell type, the pericycle. Cell-type-specific transcriptome profiling of the primary root pericycle 64 h after germination, thus before lateral root initiation, via a combination of laser capture microdissection and subsequent microarray analyses of 12k maize microarray chips revealed 90 genes preferentially expressed in the wild-type pericycle and 73 genes preferentially expressed in the rum1 pericycle (fold change >2; P-value <0.01; estimated false discovery rate of 13.8%). Among the 51 annotated genes predominately expressed in the wild-type pericycle, 19 genes are involved in signal transduction, transcription, and the cell cycle. This analysis defines an array of genes that is active before lateral root initiation and will contribute to the identification of checkpoints involved in lateral root formation downstream of rum1.


Asunto(s)
Genes de Plantas/genética , Mutación/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Transcripción Genética/genética , Zea mays/genética , Transporte Biológico , Clonación Molecular , Cruzamientos Genéticos , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/embriología , Plantones/anatomía & histología , Zea mays/anatomía & histología , Zea mays/citología , Zea mays/metabolismo
5.
Plant Physiol ; 136(2): 3148-58, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15466240

RESUMEN

Heat shock factors (HSFs) are transcriptional regulators of the heat shock response. The major target of HSFs are the genes encoding heat shock proteins (HSPs), which are known to have a protective function that counteracts cytotoxic effects. To identify other HSF target genes, which may be important determinants for the generation of stress tolerance in Arabidopsis, we screened a library enriched for genes that are up-regulated in HSF3 (AtHsfA1b)-overexpressing transgenic plants (TPs). Galactinol synthase1 (GolS1) is one of the genes that is heat-inducible in wild type, but shows constitutive mRNA levels in HSF3 TPs. The generation and analysis of TPs containing GolS1-promoter::beta-glucuronidase-reporter gene constructs showed that, upon heat stress, the expression is transcriptionally controlled and occurs in all vegetative tissues. Functional consequences of GolS1 expression were investigated by the quantification of raffinose, stachyose, and galactinol contents in wild type, HSF3 TPs, and two different GolS1 knockout mutants (gols1-1 and gols1-2). This analysis demonstrates that (1) raffinose content in leaves increases upon heat stress in wild-type but not in the GolS1 mutant plants; and (2) the level of raffinose is enhanced and stachyose is present at normal temperature in HSF3 TPs. These data provide evidence that GolS1 is a novel HSF target gene, which is responsible for heat stress-dependent synthesis of raffinose, a member of the raffinose family oligosaccharides. The biological function of this osmoprotective substance and the role of HSF-dependent genes in this biochemical pathway are discussed.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Galactosiltransferasas/genética , Factores de Transcripción/genética , Trisacáridos/biosíntesis , Arabidopsis/genética , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Galactosiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico , Calor , Datos de Secuencia Molecular , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Unión Proteica , ARN de Planta/metabolismo , Factores de Transcripción/metabolismo
6.
Plant J ; 38(2): 227-43, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078327

RESUMEN

A crucial role for sterols in plant growth and development is underscored by the identification of three Arabidopsis sterol biosynthesis mutants that exhibit embryonic defects: fackel (fk), hydra1 (hyd1), and sterol methyltransferase 1/cephalopod (smt1/cph). We have taken a dual approach of sterol profiling and ultrastructural analysis to investigate the primary defects underlying the mutant phenotypes. Comprehensive gas chromatography GC-MS analysis of hyd1 in comparison to fk reveals an abnormal accumulation of unique sterol intermediates in each case. Sterol profiling of the fk hyd1 double mutant provides genetic evidence that FK C-14 reductase acts upstream of HYD1 C-8,7 isomerase. Despite distinct differences in sterol profiles, fk and hyd1 as well as smt1/cph share ultrastructural features such as incomplete cell walls and aberrant cell wall thickenings in embryonic and post-embryonic tissues. The common defects are coupled with ectopic callose and lignin deposits. We show that all three mutants exhibit a deficiency in cellulose, but are not reduced in pectin and sugars of the cell wall and cytosol. The sterol biosynthesis inhibitors 15-azasterol and fenpropimorph also cause cell wall gaps in dividing root cells and a reduction in bulk cellulose, corroborating that the cell wall abnormalities are due to altered sterol composition. Our results demonstrate that sterols are crucial for cellulose synthesis in the building of the plant cell wall.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Esteroles/biosíntesis , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Genes de Plantas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Microscopía Electrónica , Modelos Biológicos , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo
7.
Plant Cell ; 16(7): 1827-40, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15208395

RESUMEN

Secretion is a fundamental process providing plants with the means for disposal of solutes, improvement of nutrient acquisition, and attraction of other organisms. Specific secretory organs, such as nectaries, hydathodes, and trichomes, use a combination of secretory and retrieval mechanisms, which are poorly understood at present. To study the mechanisms involved, an Arabidopsis thaliana activation tagged mutant, glutamine dumper1 (gdu1), was identified that accumulates salt crystals at the hydathodes. Chemical analysis demonstrated that, in contrast with the amino acid mixture normally present in guttation droplets, the crystals mainly contain Gln. GDU1 was cloned and found to encode a novel 17-kD protein containing a single putative transmembrane span. GDU1 is expressed in the vascular tissues and in hydathodes. Gln content is specifically increased in xylem sap and leaf apoplasm, whereas the content of several amino acids is increased in leaves and phloem sap. Selective secretion of Gln by the leaves may be explained by an enhanced release of this amino acid from cells. GDU1 study may help to shed light on the secretory mechanisms for amino acids in plants.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , ADN Bacteriano/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fenotipo , Raíces de Plantas/metabolismo
8.
Plant J ; 33(2): 211-20, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12535336

RESUMEN

Transport processes across the plasma membrane of leaf vascular tissue are essential for transport and distribution of assimilates. In potato, leaves are the predominant sites for nitrate reduction and amino acid biosynthesis. From there, assimilated amino acids are exported through the phloem to supply tubers with organic nitrogen. To study the role of amino acid transporters in long-distance transport and allocation of organic nitrogen in potato plants, a gene encoding a functional, leaf-expressed amino acid permease StAAP1 was isolated. Similar to the sucrose transporter SUT1, StAAP1 expression was induced during the sink-to-source transition, indicating a role in phloem loading. To test the role of StAAP1, expression was inhibited by an antisense approach. Transgenic plants with reduced StAAP1 expression were phenotypically indistinguishable from wild type, as were photosynthetic capacity and tuber yield. However, tubers from antisense StAAP1 plants showed up to 50% reduction in free amino acid contents. In comparison, starch content was not affected or tended to increase relative to wild type. The reduction in all amino acids except aspartate in the antisense plants is consistent with the properties of amino acid permeases (AAPs) found in heterologous systems. The results demonstrate an important role for StAAP1 in long-distance transport of amino acids and highlight the importance of plasma membrane transport for nutrient distribution in plants.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Regulación hacia Abajo , ARN sin Sentido/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transporte Biológico Activo , Respiración de la Célula , Clorofila/análisis , Clonación Molecular , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Especificidad de Órganos , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Plantas Modificadas Genéticamente , ARN sin Sentido/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Solanum tuberosum/enzimología , Levaduras
9.
Plant J ; 34(1): 13-26, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12662305

RESUMEN

Nucleobases and derivatives like cytokinins and caffeine are translocated in the plant vascular system. Transport studies in cultured Arabidopsis cells indicate that adenine and cytokinin are transported by a common H+-coupled high-affinity purine transport system. Transport properties are similar to that of Arabidopsis purine transporters AtPUP1 and 2. When expressed in yeast, AtPUP1 and 2 mediate energy-dependent high-affinity adenine uptake, whereas AtPUP3 activity was not detectable. Similar to the results from cell cultures, purine permeases (PUP) mediated uptake of adenine can be inhibited by cytokinins, indicating that cytokinins are transport substrates. Direct measurements demonstrate that AtPUP1 is capable of mediating uptake of radiolabeled trans-zeatin. Cytokinin uptake is strongly inhibited by adenine and isopentenyladenine but is poorly inhibited by 6-chloropurine. A number of physiological cytokinins including trans- and cis-zeatin are also efficient competitors for AtPUP2-mediated adenine uptake, suggesting that AtPUP2 is also able to mediate cytokinin transport. Furthermore, AtPUP1 mediates transport of caffeine and ribosylated purine derivatives in yeast. Promoter-reporter gene studies point towards AtPUP1 expression in the epithem of hydathodes and the stigma surface of siliques, suggesting a role in retrieval of cytokinins from xylem sap to prevent loss during guttation. The AtPUP2 promoter drives GUS reporter gene activity in the phloem of Arabidopsis leaves, indicating a role in long-distance transport of adenine and cytokinins. Promoter activity of AtPUP3 was only found in pollen. In summary, three closely related PUPs are differentially expressed in Arabidopsis and at least two PUPs have properties similar to the adenine and cytokinin transport system identified in Arabidopsis cell cultures.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Estructuras de las Plantas/metabolismo , Polen/metabolismo , Adenina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Transporte Biológico Activo , Cafeína/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/antagonistas & inhibidores , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Nucleobases , Nucleósidos/metabolismo , Levaduras
10.
Plant Cell ; 16(12): 3413-25, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15548746

RESUMEN

In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized. Although Pro degradation was undetectable in p5cdh mutants, neither increased Pro levels nor an altered growth phenotype were observed under normal conditions. Thus AtP5CDH is essential for Pro degradation but not required for vegetative plant growth. External Pro application caused programmed cell death, with callose deposition, reactive oxygen species production, and DNA laddering, involving a salicylic acid signal transduction pathway. p5cdh mutants were hypersensitive toward Pro and other molecules producing P5C, such as Arg and Orn. Pro levels were the same in the wild type and mutants, but P5C was detectable only in p5cdh mutants, indicating that P5C accumulation may be the cause for Pro hypersensitivity. Accordingly, overexpression of AtP5CDH resulted in decreased sensitivity to externally supplied Pro. Thus, Pro and P5C/Glu semialdehyde may serve as a link between stress responses and cell death.


Asunto(s)
Apoptosis/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Prolina/metabolismo , 1-Pirrolina-5-Carboxilato Deshidrogenasa , Aldehído Oxidorreductasas/metabolismo , Apoptosis/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Arginina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Glutamato-5-Semialdehído Deshidrogenasa , Ácido Glutámico/metabolismo , Mutación/genética , Ornitina/metabolismo , Ornitina/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Prolina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda