RESUMEN
Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO3 and pH were varied. AgNPs presented mean sizes between 7.0 and 12.8â nm and were stable up to 120â days. The AgNPs were employed as co-catalyst (TiO2 @AgNPs) to increase the hydrogen photogeneration under UV-vis and only visible light irradiation, when compared to pristine TiO2 NPs. The prepared photocatalyst also showed hydrogen generation under visible light. Additionally, AgNPs were used to assemble a nanoplasmonic biosensor for the biodetection of extremely low concentrations of streptavidin, owing to its specific binding to biotin. It is shown here that green AgNPs are versatile nanomaterials, thus being potential candidates for hydrogen photogeneration and biosensing applications.
Asunto(s)
Nanopartículas del Metal , Plata , Extractos Vegetales , Escherichia coli , AntibacterianosRESUMEN
Anionic liposomes (AL) are very attractive for nanomedicine and some formulations have already been launched for clinical development. Despite the excellent potential, their application presents two major challenges: laborious production methods and rapid degradation and elimination from blood by the immune system. In this work, we optimized the production of AL and its stealth form (SAL) using a onestep microfluidic process. We obtained unilamellar and near-monodisperse (< 10%) AL composed by the commercial composition (DMPC:DMPG) with mean size small as 53.7 nm, which is optimized for application in drug delivery. We also obtained SAL with similar characteristics using the microfluidic technique, overcoming the limitation of conventional methods where SAL presents high polydispersity (> 30%). This study demonstrates the great potential of the microfluidic technique for one-step production of stealth anionic nanoliposomes with controlled sizes and reproducible characteristics.