Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463203

RESUMEN

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , MicroARNs , Canales de Sodio Activados por Voltaje , Humanos , Ratones , Ratas , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/genética
2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903415

RESUMEN

The identification of viruses from negative staining transmission electron microscopy (TEM) images has mainly depended on experienced experts. Recent advances in artificial intelligence have enabled virus recognition using deep learning techniques. However, most of the existing methods only perform virus classification or semantic segmentation, and few studies have addressed the challenge of virus instance segmentation in TEM images. In this paper, we focus on the instance segmentation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and other respiratory viruses and provide experts with more effective information about viruses. We propose an effective virus instance segmentation network based on the You Only Look At CoefficienTs backbone, which integrates the Swin Transformer, dense connections and the coordinate-spatial attention mechanism, to identify SARS-CoV-2, H1N1 influenza virus, respiratory syncytial virus, Herpes simplex virus-1, Human adenovirus type 5 and Vaccinia virus. We also provide a public TEM virus dataset and conduct extensive comparative experiments. Our method achieves a mean average precision score of 83.8 and F1 score of 0.920, outperforming other state-of-the-art instance segmentation algorithms. The proposed automated method provides virologists with an effective approach for recognizing and identifying SARS-CoV-2 and assisting in the diagnosis of viruses. Our dataset and code are accessible at https://github.com/xiaochiHNU/Virus-Instance-Segmentation-Transformer-Network.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Inteligencia Artificial , Algoritmos , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581127

RESUMEN

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Asunto(s)
Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Oligonucleótidos Antisentido/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Animales , Antagomirs/farmacología , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Epilepsia , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteómica , Ratas , Ratas Sprague-Dawley , Convulsiones/genética , Análisis de Sistemas , Regulación hacia Arriba/efectos de los fármacos
4.
Basic Res Cardiol ; 116(1): 16, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689033

RESUMEN

BACKGROUND: Remote ischemic conditioning (RIC) by brief periods of limb ischemia and reperfusion protects against ischemia-reperfusion injury. We studied the cardioprotective role of extracellular vesicles (EV)s released into the circulation after RIC and EV accumulation in injured myocardium. METHODS: We used plasma from healthy human volunteers before and after RIC (pre-PLA and post-PLA) to evaluate the transferability of RIC. Pre- and post-RIC plasma samples were separated into an EV enriched fraction (pre-EV + and post-EV +) and an EV poor fraction (pre-EV- and post-EV-) by size exclusion chromatography. Small non-coding RNAs from pre-EV + and post-EV + were purified and profiled by NanoString Technology. Infarct size was compared in Sprague-Dawley rat hearts perfused with isolated plasma and fractions in a Langendorff model. In addition, fluorescently labeled EVs were used to assess homing in an in vivo rat model. (ClinicalTrials.gov, number: NCT03380663) RESULTS: Post-PLA reduced infarct size by 15% points compared with Pre-PLA (55 ± 4% (n = 7) vs 70 ± 6% (n = 8), p = 0.03). Post-EV + reduced infarct size by 16% points compared with pre-EV + (53 ± 15% (n = 13) vs 68 ± 12% (n = 14), p = 0.03). Post-EV- did not affect infarct size compared to pre-EV- (64 ± 3% (n = 15) and 68 ± 10% (n = 16), p > 0.99). Three miRNAs (miR-16-5p, miR-144-3p and miR-451a) that target the mTOR pathway were significantly up-regulated in the post-EV + group. Labelled EVs accumulated more intensely in the infarct area than in sham hearts. CONCLUSION: Cardioprotection by RIC can be mediated by circulating EVs that accumulate in injured myocardium. The underlying mechanism involves modulation of EV miRNA that may promote cell survival during reperfusion.


Asunto(s)
Brazo/irrigación sanguínea , Vesículas Extracelulares/trasplante , Precondicionamiento Isquémico , MicroARNs/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Animales , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Preparación de Corazón Aislado , Masculino , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Sprague-Dawley , Flujo Sanguíneo Regional
5.
Plant J ; 88(2): 306-317, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27322352

RESUMEN

Long terminal repeat (LTR) retrotransposons are closely related to retroviruses, and their activities shape eukaryotic genomes. Here, we present a complete Lotus japonicus insertion mutant collection generated by identification of 640 653 new insertion events following de novo activation of the LTR element Lotus retrotransposon 1 (LORE1) (http://lotus.au.dk). Insertion preferences are critical for effective gene targeting, and we exploit our large dataset to analyse LTR element characteristics in this context. We infer the mechanism that generates the consensus palindromes typical of retroviral and LTR retrotransposon insertion sites, identify a short relaxed insertion site motif, and demonstrate selective integration into CHG-hypomethylated genes. These characteristics result in a steep increase in deleterious mutation rate following activation, and allow LORE1 active gene targeting to approach saturation within a population of 134 682 L. japonicus lines. We suggest that saturation mutagenesis using endogenous LTR retrotransposons with germinal activity can be used as a general and cost-efficient strategy for generation of non-transgenic mutant collections for unrestricted use in plant research.


Asunto(s)
Lotus/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Metilación de ADN/genética , Mutagénesis Insercional , Mutación/genética , Proteínas de Plantas/genética
6.
Methods Mol Biol ; 2765: 143-157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381338

RESUMEN

Circular RNAs (circRNAs) constitute a group of RNAs defined by a covalent bond between the 5' and 3' end formed by a unique back-splicing event. Most circRNAs are composed of more than one exon, which are spliced together in a linear fashion. This protocol describes methods to sequence full-length circRNA across the back-splicing junction, allowing unambiguous characterization of circRNA-specific exon-intron structures by long-read sequencing (LRS). Two different sequencing approaches are provided: (1) Global circRNA sequencing (the circNick-LRS strategy) relying on circRNA enrichment from total RNA followed by total circRNA long-read sequencing, and (2) targeted circRNA sequencing (the circPanel-LRS strategy) where a preselected panel of circRNA are sequenced without prior circRNA enrichment. Both methods were originally described in Karim et al. (Rahimi et al., Nat Commun 12: 4825, 2021) where they were applied to characterize the exon-intron structure of >10.000 circRNAs in mouse and human brains.

7.
Mater Horiz ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295492

RESUMEN

Alzheimer's disease (AD) is distinguished by amyloid-ß (Aß) deposition and plaque formation, prompting significant interest in fluorescence imaging and photooxidation of Aß aggregates for diagnostic and intervention purposes. However, the molecular engineering required to modulate fluorescence imaging and photooxidation of Aß presents notable challenges. Here, we present the design of four small molecules (BTD-SZ, BTD-YD, BTD-TA-SZ, and BTD-TA-YD) aimed at investigating the influence of intramolecular freedom of movement on imaging and photooxidation. Notably, BTD-SZ exhibits exceptional fluorescence properties, offering promising potential for non-invasive detection of Aß plaques in vivo. Furthermore, by converting dimethylamine into triphenylamine to restrict intramolecular freedom of movement in the aggregate state, we synthesized a photosensitizer denoted as BTD-TA-SZ. This compound demonstrates aggregation-induced photooxidation (AIP), effectively impeding Aß aggregation under light irradiation in vivo. Thus, the modulation of intramolecular freedom of movement emerges as a pivotal molecular engineering strategy for developing photosensitizers for the diagnosis and intervention of AD, offering insights into innovative approaches for combating this debilitating condition.

8.
Mol Ther Nucleic Acids ; 35(3): 102305, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281705

RESUMEN

In cancer molecular imaging, selecting binders with high specificity and affinity for biomarkers is paramount for achieving high-contrast imaging within clinical time frames. Nanobodies have emerged as potent candidates, surpassing antibodies in pre-clinical imaging due to their convenient production, rapid renal clearance, and deeper tissue penetration. Multimerization of nanobodies is a popular strategy to enhance their affinity and pharmacokinetics; however, traditional methods are laborious and may yield heterogeneous products. In this study, we employ a Holliday junction (HJ)-like nucleic acid-based scaffold to create homogeneous nanostructures with precise multivalent and multiparatopic nanobody displays. The plug-and-play assembly allowed the screening of several nanobody multimer configurations for the detection of the breast cancer biomarker, human epidermal growth factor receptor 2 (HER2). In vitro studies demonstrated significant improvements in binding avidity, particularly with the biparatopic construct exhibiting high sensitivity, surpassing that of traditional antibody-based cell binding. Furthermore, our HJ platform allowed for adaptation from fluorescence-based to nuclear imaging, as demonstrated in xenografted mice, thereby allowing for future in vivo applications. This work highlights the potential of nucleic acid-mediated multimerization to markedly enhance nanobody binding, by exploring synergistic combinations and offering versatility for both in vitro diagnostics and cancer molecular imaging with prospects for future theranostic applications.

9.
Cell Rep ; 43(3): 113862, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446664

RESUMEN

Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN no Traducido , ARN Circular , Transducción de Señal , ARN Largo no Codificante/metabolismo , Isquemia
10.
Artículo en Inglés | MEDLINE | ID: mdl-35722136

RESUMEN

The pomegranate flower is an ancient herb in traditional Chinese medicine with multiple properties. Recent studies have shown that pomegranate flower extract is beneficial, especially for hyperglycemia. In this experiment, we investigated the diastolic effect of pomegranate flower polyphenol (PFP) extract on the isolated thoracic aorta of rats in both the absence and presence of high glucose levels. Isotonic contractile forces were recorded from aortic rings (about 3 mm in length) from rats using the BL-420F Biological Function Test System. Tissues were precontracted with 60 mM KCl to obtain maximum tension under 1.0 g load for 1 hour before the balance was achieved, and the fluid was changed every 15 minutes. PFP (700 mg/L-900 mg/L) showed a concentration-dependent relaxant effect on the aortic rings; vasodilation in the endothelium-intact was significantly higher than that in the de-endothelialized segments (P < 0.01). The endothelium-dependent vasorelaxant effect of PFP was partially attenuated by K+ channel blockers, tetraethylammonium (TEA), glibenclamide (Glib), and BaCl2, as well as L-NAME (eNOS inhibitor) on the denuded endothelium artery ring. Concentration-dependent inhibition of PFP on releasing intracellular Ca2+ in the Ca2+-free solution and vasoconstriction of CaCl2 in Ca2+-free buffer plus K+ (60 mM) was observed. In addition, PFP (0.1-10 mg/L) showed significant inhibition of acetylcholine-induced endothelial-dependent relaxation in the aorta of rats in the presence of high glucose (44 mmol/L). Nevertheless, the vasodilating effect of PFP was inhibited by atropine and L-NAME. The results indicated that PFP-induced vasodilation was most likely related to the antioxidant effects through enhanced NO synthesis, as well as the blocking of K+ channels and inhibition of extracellular Ca2+ entry. In conclusion, these observations showed that PFP ameliorates vasodilation in hyperglycemic rats. Hence, our results suggest that PFP supplementation may be beneficial for hypertensive patients with diabetes.

11.
ACS Appl Bio Mater ; 5(6): 3049-3056, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35671477

RESUMEN

Alzheimer's disease (AD), known as a common incurable and elderly neurodegenerative disease, has been widely explored for accurate detection of its biomarker (Aß oligomers) for early diagnosis. Although great efforts have been made, it is still of great importance to develop fluorescence probes for Aß oligomers with good selectivity and low background. Herein, starting from BODIPY493/503 (a commercial dye for neutral lipid droplets), which exhibited a small Stokes shift and no response toward Aß peptides, two fluorescence probes 5MB-SZ and B-SZ with a benzothiazole rotor at the 2-position of the BODIPY core and a methyl or benzyl group at the meso position have been designed and synthesized, which exhibited excellent optical properties/stability and could successfully image ß-amyloid fibrils and viscosity. Upon exposure to Aß oligomers, the fluorescence intensity of 5MB-SZ was enhanced by 43.64-fold with the corresponding fluorescence quantum yields changing from 0.85% to 27.43%. Meanwhile, probe 5MB-SZ showed a highly sensitive viscosity response in both solutions and living cells. In vitro and in vivo experiments confirmed that probe 5MB-SZ exhibited an excellent capacity for imaging ß-amyloid fibrils. Therefore, 5MB-SZ, as a rotor-tuning BODIPY analogue, could possibly serve as a highly potential and powerful fluorescence probe for early diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Anciano , Enfermedad de Alzheimer/diagnóstico , Amiloide , Péptidos beta-Amiloides , Boro , Humanos , Porfobilinógeno/análogos & derivados , Viscosidad
12.
Biomedicines ; 9(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34572398

RESUMEN

Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC. In this study, we used C2C12 cells as a model system and performed cyclic hypoxia-reoxygenation (HR) to mimic RIC. EVs were collected and subjected to small RNA profiling and proteomics. HR induced a distinct shift in the miRNA profile and protein content in EVs. HR EV treatment restored cell viability, dampened inflammation, and enhanced tube formation in in vitro assays. In vivo, HR EVs showed increased accumulation in the ischemic brain compared to EVs secreted from normoxic culture (N EVs) in a mouse undergoing transient middle cerebral artery occlusion (tMCAO). We conclude that HR conditioning changes the miRNA and protein profile in EVs released by C2C12 cells and enhances the protective signal in the EVs to recipient cells in vitro.

13.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520398

RESUMEN

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Asunto(s)
Arginasa/fisiología , Neoplasias de la Mama/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Tolerancia Inmunológica , Células Mieloides/enzimología , Microambiente Tumoral , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , AMP Cíclico/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
14.
Biomedicines ; 8(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998458

RESUMEN

Multipotent stem cells (MSCs) are used in various therapeutic applications based on their paracrine secretion activity. Here, we set out to identify and characterize the paracrine factors released during osteoblastogenesis, with a special focus on small non-coding RNAs released in extracellular vesicles (EVs). Bone marrow stem cells (BMSCs) and adipose stem cells (ASCs) from healthy human donors were used as representatives of MSCs. We isolated EVs secreted before and after induction of osteoblastic differentiation and found that the EVs contained a specific subset of microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNA) compared to their parental cells. Osteoblastic differentiation had a larger effect on the small RNA profile of BMSC-EVs relative to ASC-EVs. Our data showed that EVs from different MSC origin exhibited distinct expression profiles of small RNA profiles when undergoing osteoblastogenesis, a factor that should be taken into consideration for stem cell therapy.

15.
Chem Asian J ; 14(9): 1477-1480, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30834679

RESUMEN

Iodine-promoted direct diamination of α,ß-unsaturated ketone to form two C-N bonds has been developed starting from chalcone and secondary amine. This reaction was performed in THF at 50 °C in the presence of I2 and K2 CO3. The protocol is metal-free, operationally simple and carried out under mild conditions, providing an effective new way for directing diamination reactions.

16.
J Vis Exp ; (145)2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30907893

RESUMEN

Extracellular and circulating RNAs (exRNA) are produced by many cell types of the body and exist in numerous bodily fluids such as saliva, plasma, serum, milk and urine. One subset of these RNAs are the posttranscriptional regulators - microRNAs (miRNAs). To delineate the miRNAs produced by specific cell types, in vitro culture systems can be used to harvest and profile exRNAs derived from one subset of cells. The secreted factors of mesenchymal stem cells are implicated in alleviating numerous diseases and is used as the in vitro model system here. This paper describes the process of collection, purification of small RNA and library generation to sequence extracellular miRNAs. ExRNAs from culture media differ from cellular RNA by being low RNA input samples, which calls for optimized procedures. This protocol provides a comprehensive guide to small exRNA sequencing from culture media, showing quality control checkpoints at each step during exRNA purification and sequencing.


Asunto(s)
Espacio Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Animales , Bacterias/genética , Secuencia de Bases , Bovinos , Diferenciación Celular , Forma de la Célula , Biblioteca de Genes , Humanos , MicroARNs/genética , Anotación de Secuencia Molecular , Osteogénesis , Tamaño de la Partícula
17.
Brain Stimul ; 12(6): 1390-1401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31208877

RESUMEN

BACKGROUND: Up to 80% of mesial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS) are resistant to pharmacological treatment, often necessitating surgical resection. Deep brain stimulation (DBS) has emerged as an alternative treatment for patients who do not qualify for resective brain surgery. Brain stimulation may also exert disease-modifying effects, and noncoding microRNAs have recently been proposed to shape the gene expression landscape in epilepsy. OBJECTIVE: We compared the effect of DBS of 4 different hippocampal target regions on epileptogenesis and manifest epilepsy in a rat model of mTLE-HS. To explore mechanisms, we profiled the effect of the most effective DBS paradigm on hippocampal microRNA levels. METHODS: MTLE-HS was induced by electrical stimulation of the perforant pathway (PP) in rats. This paradigm leads to spontaneous seizures within 4 weeks. We investigated DBS of 4 targets: PP, fimbria fornix (FF) formation, dentate gyrus (DG) and ventral hippocampal commissure (VHC). We applied both high- (130 Hz) and low-frequency (5 Hz or 1 Hz) stimulation. Functional microRNAs were identified in the hippocampus immediately after VHC-DBS and after a 97-day recording period by sequencing small RNAs bound to Argonaute-2, a component of the miRNA silencing complex. RESULTS: Low frequency DBS of the VHC significantly delayed the occurrence of the first spontaneous recurrent seizure in the PPS model by ∼300%, from 19 to 56 days. No other stimulation regime altered the latency phase. Upregulation of 5 microRNAs during epileptogenesis was suppressed by VHC-stimulation. CONCLUSION: We conclude that DBS of the VHC delays epilepsy in the PPS model in rats and is associated with differential regulation of several miRNAs. Additional studies are required to determine whether VHC-regulated miRNAs serve causal roles in the anti-epileptogenic effects of this DBS model.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/terapia , Fórnix/metabolismo , MicroARNs/biosíntesis , Animales , Epilepsia del Lóbulo Temporal/genética , Expresión Génica , Masculino , MicroARNs/genética , Ratas , Ratas Sprague-Dawley , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/terapia
18.
JCI Insight ; 4(19)2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31578308

RESUMEN

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/metabolismo , Proteínas de los Retroviridae/metabolismo , Adulto , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Virus Linfotrópico T Tipo 1 Humano , Humanos , Estimación de Kaplan-Meier , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Proteínas de los Retroviridae/genética , Transcriptoma
19.
Mol Plant ; 10(5): 721-734, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28286296

RESUMEN

Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCB1. In Arabidopsis thaliana, SCO2 function was previously reported to be restricted to cotyledons. Here we show that disruption of SCO2 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale-green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSII-LHCII complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant development and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSII assembly or repair and constitutes a novel factor involved in leaf variegation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Cloroplastos/fisiología , Lotus/crecimiento & desarrollo , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/fisiología , Proteína Disulfuro Isomerasas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas del Choque Térmico HSP40/química , Lotus/genética , Mutación , Fotosíntesis , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Proteína Disulfuro Isomerasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda