Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
RSC Adv ; 12(40): 26134-26146, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36275101

RESUMEN

Six cobalt gold (CoAu) electrodes were prepared by electroless deposition using different gold-containing solutions (acidic and weakly acidic) and different Au deposition times. Characterization of CoAu electrodes was done by scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2-sorption, and X-ray powder diffraction techniques. The possibility of using the prepared electrodes in environmental applications, i.e., for the electrochemical sensing of a trace amount of arsenic(iii) in weakly alkaline media was assessed. Employing the CoAu electrode (prepared by immersing Co/Cu into 1 mM HAuCl4 (pH 1.8) at 30 °C for 30 s) under optimized conditions (deposition potential -0.7 V and deposition time of 60 s), a low limit of detection of 2.16 ppb was obtained. Finally, this CoAu electrode showed activity for arsenic oxidation in the presence of Cu(ii) as a model interferent as well as in real samples. Furthermore, the use of CoAu electrode as an anode in fuel cells, namely, direct borohydride - hydrogen peroxide fuel cells was also assessed. A peak power density of 191 mW cm-2 was attained at 25 °C for DBHPFC with CoAu anode at a current density of 201 mA cm-2 and cell voltage of 0.95 V, respectively. The peak power density further increased with the increase of the operating temperature to 55 °C.

2.
Environ Technol ; 43(21): 3269-3282, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33881966

RESUMEN

In this study, Mn-based multicomponent catalysts supported by two different carriers (lightweight expanded clay aggregate and the Ukrainian clinoptiolite) were prepared by electroless metal deposition method and tested for the selective catalytic reduction of NO with ammonia (NH3-SCR de-NO). Prior to the activity test, all the catalysts prepared were characterized by inductively coupled plasma optical emission spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray mapping, X-ray photoelectron spectroscopy, H2-TPR and NH3-TPD techniques. The particular interest of the present study was focused on the investigation of the carrier's role in the NO catalytic reduction and the promoting effect provided by the incorporation of the small amount of Pt (0.1 wt.%) in the Mn-based catalytic layer. The results revealed that the carrier's role in the NO catalytic conversion can be considered as a factor determining the effectiveness of the conversion process. Ukrainian clinoptiolite was proved to be a more attractive carrier for the preparation of the effective SCR de-NO catalysts due to its intrinsic sorption capacity, surface acidity and the redox potential. The high NO conversion efficiency provided by the Mn-based clinoptiolite-supported catalysts can be explained by the synergistic effect between the carrier and the active species deposited. It was shown that both the Mn97.6Cu2.4/clinoptiolite and the Mn97.5Co2.5/clinoptiolite catalysts can be successfully applied as the low-temperature (100-300°C) catalysts for NH3-SCR de-NO. When the NO removal efficiency varies in the range of 86-91%, the additional incorporation of Pt in the active layer in the amount of 0.1 wt.% can enhance the NO reduction by about 5% on average.

3.
Materials (Basel) ; 14(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379230

RESUMEN

Bimetallic cobalt (Co)-based coatings were prepared by a facile, fast, and low-cost electroless deposition on a copper substrate (CoFe, CoMn, CoMo) and characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Prepared coatings were thoroughly examined for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution (1 M potassium hydroxide, KOH) and their activity compared to that of Co and Ni coatings. All five coatings showed activity for both reactions, where CoMo and Co showed the highest activity for HER and OER, respectively. Namely, the highest HER current density was recorded at CoMo coating with low overpotential (61 mV) to reach a current density of 10 mA·cm-2. The highest OER current density was recorded at Co coating with a low Tafel slope of 60 mV·dec-1. Furthermore, these coatings proved to be stable under HER and OER polarization conditions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda