Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Plant Biol ; 24(1): 420, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760701

RESUMEN

Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.


Asunto(s)
Antioxidantes , Gases em Plasma , Plantones , Solanum lycopersicum , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Gases em Plasma/farmacología , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo
2.
Sci Rep ; 13(1): 11103, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423949

RESUMEN

This study was conducted to evaluate the ability of some fungal culture filtrate, as biocontrol agents against okra wilt caused by Fusarium solani. and Meloidogyne javanica. In the present study, fungal culture filtrates (FCFs) of Aspergillus terreus (1), Aspergillus terreus (2), Penicillium chrysogenum, and Trichoderma spp. were tested against M. javanica in vitro. The effects of P. chrysogenum and Trichoderma spp. (FCFs) in controlling root-rot fungi and root-knot nematode disease complex on okra plants were studied under greenhouse conditions (In vivo). In vitro experiment, the results revealed cumulative rate of J2s mortality of M. javanica reached to 97.67 and 95% by P. chrysogenum and Trichoderma spp., respectively, after 72 h. incubation. Additionally, Trichoderma spp exhibited the most effective inhibitory activity against the pathogen's radial growth, with a percentage of 68%. P. chrysogenum ranked second with 53.88%, while A. terreus (2) demonstrated the weakest inhibitory effect of 24.11%. T6 [Nematode infection (M. javanica) + Fungus infection (F. solani) + Overflowed with fungal culture filtrate (P. chrysogenum)] and T8 [Nematode infection (M. javanica) + Fungus infection (F. solani) + spray with fungal culture filtrate (P. chrysogenum)] had the greatest effects on nematode galling indices on okra roots and substantially reduced the reproductive factors in the greenhouse (In vivo experiment). T6 was the best treatment to decrease disease severity, as reached (28%) relatively. On the other hand, T12 [(Fungus infection (F. solani) + (Dovex 50% fungicide with irrigation water)] recorded the lowest disease severity reaching (8%) relatively. The results showed that nematode infection or fungus infection or both decreased all studied anatomical characteristics of okra root, stem, and leaves. We concluded from this study that root-knot nematode and root-rot fungi were reduced by using fungal culture filtrates and could improve plant growth.


Asunto(s)
Abelmoschus , Micosis , Infecciones por Nematodos , Tylenchoidea , Animales , Aspergillus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda