Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioorg Chem ; 138: 106623, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295240

RESUMEN

Fangchinoline (Fan) are extracted from the traditional Chinese medicine Stephania tetrandra S., which is a bis-benzyl isoquinoline alkaloids with anti-tumor activity. Therefore, 25 novel Fan derivatives have been synthesized and evaluated for their anti-cancer activity. In CCK-8 assay, these fangchinoline derivatives displayed higher proliferation inhibitory activity on six tumor cell lines than the parental compound. Compared to the parent Fan, compound 2h presented the anticancer activity against most cancer cells, especially A549 cells, with an IC50 value of 0.26 µM, which was 36.38-fold, and 10.61-fold more active than Fan and HCPT, respectively. Encouragingly, compound 2h showed low biotoxicity to the human normal epithelial cell BEAS-2b with an IC50 value of 27.05 µM. The results indicated compound 2h remarkably inhibited the cell migration by decreasing MMP-2 and MMP-9 expression and inhibited the proliferation of A549 cells by arresting the G2/M cell cycle. Meanwhile, compound 2h could also induce A549 cell apoptosis by promoting endogenous pathways of mitochondrial regulation. In nude mice presented that the growth of tumor tissues was markedly inhibited by the consumption of compound 2h in a dose-dependent manner, and it was found that compound 2h could inhibit the mTOR/PI3K/AKT pathway in vivo. In docking analysis, high affinity interaction between 2h and PI3K was responsible for drastic kinase inhibition by the compound. To conclude, this derivative compound may be useful as a potent anti-cancer agent for treatment of NSCLC.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Bioorg Chem ; 126: 105916, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35687986

RESUMEN

Hyperuricemia is a common metabolic disease with a series of complications. Nuciferine, a typical aporphine alkaloid natural compound extracted from the leaves of Nelumbo nucifera Gaertn., was confirmed to have an antihyperuricemia effect. In the present study, 30 novel nuciferine derivatives were designed and synthesized. The effects of all derivatives on the regulation of URAT1 were studied in a uric acid-induced HK-2 cell model with benzbromarone as a positive control. The results indicated that Compound 1j showed the optimal URAT1 inhibitory activity through repressing PI3K/Akt pathway in HK-2 cells and the inhibitory effect was similar to that of benzbromarone. In addition, in vivo experiments demonstrated that Compound 1j could reduce uric acid levels and ameliorate kidney damage in hyperuricemic mice. On the one hand, Compound 1j could inhibit the expression of URAT1 and GLUT9 to increase the uric acid excretion index. On the other hand, Compound 1j could regulate the TLR4/IκBα/NF-κB signaling pathway to reduce the levels of inflammatory cytokines, thereby alleviating kidney damage. Meanwhile, a molecular docking assay revealed the potential molecular binding power (-9.79 kcal/mol) between Compound 1j and URAT1, which was more tightly bound than the lead compound nuciferine (-7.44 kcal/mol). Based on these results, Compound 1j may be a future drug for the development of new potential antihyperuricemia and nephroprotective drug candidates.


Asunto(s)
Aporfinas , Hiperuricemia , Transportadores de Anión Orgánico , Animales , Aporfinas/farmacología , Benzbromarona/efectos adversos , Hiperuricemia/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Úrico
3.
Bioorg Chem ; 109: 104694, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601141

RESUMEN

Cancer treatment is one of the major public health issues in the world. Tetrandrine (Tet) and fangchinoline (d-Tet) are two bis-benzyl isoquinoline alkaloids extracted from Stephania tetrandra S. Moore, and their antitumor activities have been confirmed. However, the effective dose of Tet and d-Tet were much higher than that of the positive control and failed to meet clinical standards. Therefore, in this study, as a continuation of our previous work to study and develop high-efficiency and low-toxic anti-tumor lead compounds, twenty new Tet and d-Tet derivatives were designed, synthesized and evaluated as antitumor agents against six cancer cell lines (H460, H520, HeLa, HepG-2, MCF-7, SW480 cell lines) and BEAS-2B normal cells by CCK-8 analysis. Ten derivatives showed better cytotoxic effects than the parent fangchinoline, of which 4g showed the strongest cell growth inhibitory activity with an IC50 value of 0.59 µM against A549 cells. Subsequently, the antitumor mechanism of 4g was studied by flow cytometry, Hoechst 33258, JC-1 staining, cell scratch, transwell migration, and Western blotting assays. These results showed that compound 4g could inhibit A549 cell proliferation by arresting the G2/M cell cycle and inhibiting cell migration and invasion by reducing MMP-2 and MMP-9 expression. Meanwhile, 4g could induce apoptosis of A549 cells through the intrinsic pathway regulated by mitochondria. In addition, compound 4g inhibited the phosphorylation of PI3K, Akt and mTOR, suggesting a correlation between blocking the PI3K/Akt/mTOR pathway and the above antitumor activities. These results suggest that compound 4g may be a future drug for the development of new potential drug candidates against lung cancer.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bencilisoquinolinas/química , Diseño de Fármacos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Estructura Molecular
4.
Bioorg Chem ; 94: 103431, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759658

RESUMEN

The isolation and modification of natural products play an important role in the synthesis of anti-tumor drugs for the treatment of cancer. The present study was designed to evaluate the effects of fangchinoline derivatives against cancer cells. In vitro cytotoxicity of all derivatives against five cancer cell lines (A549, Hela, HepG-2, MCF-7 and MDA-MB-231 cell lines) and HL-7702 normal cells was assessed using the CCK-8 assay, and the results showed that most of the synthesized compounds displayed better cytotoxic effects on all the tested cells compared to that of the parent fangchinoline. In particular, compound 3i had the strongest inhibitory effect on cell proliferation, with an IC50 value of 0.61 µM against A549 cells. Compared with fangchinoline and HCPT (hydroxycamptothecine), the anti-proliferative activity of compound 3i was significantly increased. More interestingly, compound 3i had slight toxic side effects on normal cells, with an IC50 value of 27.53 µM. Moreover, the cell viability and cell cycle assays revealed that compound 3i inhibited A549 cell proliferation and arrested A549 cells at the G2/M-phase. The apoptosis-inducing effects of compound 3i and the associated molecular mechanisms were assessed using flow cytometry, cell staining, reactive oxygen species assays, RT-qPCR and Western blot analysis. These results suggested that compound 3i induces apoptosis through a mitochondria-mediated intrinsic pathway. This study revealed that compound 3i is a promising candidate for future development as an anti-tumor drug.


Asunto(s)
Antineoplásicos/farmacología , Bencilisoquinolinas/farmacología , Diseño de Fármacos , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Bencilisoquinolinas/síntesis química , Bencilisoquinolinas/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
5.
Zhong Yao Cai ; 38(3): 514-7, 2015 Mar.
Artículo en Zh | MEDLINE | ID: mdl-26495651

RESUMEN

OBJECTIVE: To investigate the chemical constituents in the ethanol extract from the whole plant of Euphorbia lunulata. METHODS: The whole plant of Euphorbia lunulata was extracted by 95% ethanol, then partitioned by system solvents with different polarity. The ethyl acetate and n-butyl alcohol extracts were separated on silica gel, Sephadex LH-20,and MCI columns. The isolated compounds were determined by detailed analysis of their spectral data. RESULTS: Twelve compounds were isolated and identified from the ethyl acetate and n-butyl alcohol extracts of Euphorbia lunulata and the structures were identified as 7ß-methoxy-stigmast-5-ene-3ß-ol (1), 7ß-methoxy-stigmast-5-ene-3ß,22ß-diol(2), asperglaucide(3), moscatin (4), p-hydroxybenzoic acid (5),3-methoxy-4-hydroxy benzoic acid(6), erigeside C(7),5,7,4'-trihydroxy flavanone(8), kaempferol(9), quercetin(10), corosolic acid(11) and acacetin (12). CONCLUSION: All compounds except for 9 and 10 are reported from this plant for the first time.


Asunto(s)
Euphorbia/química , Fitoquímicos/química , Extractos Vegetales/química , Quempferoles , Fitoquímicos/aislamiento & purificación , Quercetina
6.
Tumour Biol ; 35(6): 6119-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659449

RESUMEN

Glutathione S-transferase (GST), a phase II metabolizing enzyme, plays an important role in the cellar defense system, and its activity may modulate leukemia risk. A large body of evidence has shown the possible relevance of functional polymorphisms of the genes that encode GSTs µ, π, and θ (GSTM1, GSTP1, and GST1, respectively) to the genetic susceptibility of chronic myeloid leukemia (CML). Because of the lack of available conclusive data, we performed a meta-analysis of all relevant available studies to derive a more precise estimation of the relationship. A comprehensive literature search of PubMed and Web of Knowledge electronic databases was conducted to collect relevant studies until December 20, 2013, and the extracted data were statistically analyzed using Review Manager version 5.2. Finally, 16 eligible studies were identified in the literature. The GSTT1 null genotype was associated with an increased risk of CML, as were the double null GSTT1 and GSTM1 genotypes. These findings suggest that heritable GST status influences the risk of developing CML and that more attention should be paid to carriers of these susceptibility genes.


Asunto(s)
Gutatión-S-Transferasa pi/genética , Glutatión Transferasa/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/etiología , Riesgo
7.
Jpn J Clin Oncol ; 44(11): 1070-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25145382

RESUMEN

OBJECTIVE: A large body of evidence has shown the possible relevance of polymorphisms of the genes that encode glutathione S-transferase µ, π and θ (GSTM1, GSTP1 and GST1, respectively) to the susceptibility of acute myeloid leukemia, but the exact association still remains uncertain. Therefore, we performed a meta-analysis to derive a more precise estimation of the relationship. METHODS: A comprehensive literature search of PubMed and Web of Knowledge electronic databases was conducted to collect relevant studies until 20 February 2014. References of the retrieved articles were also screened. The extracted data were statistically analyzed, and pooled odds ratios with 95% confidence intervals were calculated to estimate the association strength using Review Manager version 5.2. RESULTS: Twenty-nine studies were included in the meta-analysis. The pooled analyses revealed that the GSTM1-null genotype was associated with an increased risk of acute myeloid leukemia in East Asians (P = 0.01; odds ratio = 1.22; 95% confidence interval = 1.05-1.42), and GSTT1-null genotype in Caucasians (P < 0.0001; odds ratio = 1.48; 95% confidence interval = 1.29-1.69). There was also a predilection towards the female gender for both of these polymorphisms. For GSTP1 Ile105Val polymorphism, no significant association was found under any contrast model. In addition, the presence of the double-null genotypes increased the risk of acute myeloid leukemia in both Caucasians and East Asians. CONCLUSIONS: This meta-analysis suggested that heritable GST status could influence the risk of developing acute myeloid leukemia.


Asunto(s)
Gutatión-S-Transferasa pi/genética , Glutatión Transferasa/genética , Leucemia Mieloide Aguda/genética , Polimorfismo Genético , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Isoleucina , Oportunidad Relativa , Factores de Riesgo , Valina , Población Blanca/genética
8.
J Ethnopharmacol ; 327: 117835, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Croton crassifolius has been used as a traditional Chinese medicine (TCM), called Radix Croton Crassifolius, and commonly known as "Ji Gu Xiang" in Chinese. Its medicinal value has been recorded in several medical books or handbooks, such as "Sheng Cao Yao Xing Bei Yao", "Ben Cao Qiu Yuan" and "Zhong Hua Ben Cao". It has been traditional employed for treating sore throat, stomach-ache, rheumatism and cancer. AIM OF THE STUDY: At present, there are limited studies on the evaluation of low-polarity extracts of roots in C. crassifolius. Consequently, the aim of this study was to evaluate the antitumor effect of the low-polarity extract of C. crassifolius root. MATERIALS AND METHODS: Extracts were obtained by supercritical fluid extraction. The extracts were tested for antitumor effects in vitro on several cancer cell lines. A CCK-8 kit was used for further analysis of cell viability. A flow cytometer and propidium iodide staining were used to evaluate the cell cycle and apoptosis. Hoechst staining, JC-1 staining and the fluorescence probe DCFH-DA were used to evaluate apoptotic cells. Molecular mechanisms of action were analyzed by quantitative RT‒PCR and Western blotting. Immunohistochemistry was used for the evaluation of xenograft tumors in male BALB/c mice. Finally, molecular docking was employed to predict the bond between the desired bioactive compound and molecular targets. RESULTS: Eleven diterpenoids were isolated from low-polarity C. crassifolius root extracts. Among the compounds, chettaphanin II showed the strongest activity (IC50 = 8.58 µM) against A549 cells. Evaluation of cell viability and the cell cycle showed that Chettaphanin II reduced A549 cell proliferation and induced G2/M-phase arrest. Chttaphanin II significantly induced apoptosis in A549 cells, which was related to the level of apoptosis-related proteins. The growth of tumor tissue was significantly inhibited by chettaphanin II in experiments performed on naked mice. The antitumor mechanism of chettaphanin II is that it can obstruct the mTOR/PI3K/Akt signaling pathway in A549 cells. Molecular docking established that chettaphanin II could bind to the active sites of Bcl-2 and Bax. CONCLUSIONS: Taken together, the natural diterpenoid chettaphanin II was identified as the major antitumor active component, and its potential for developing anticancer therapies was demonstrated for the first time by antiproliferation evaluation in vitro and in vivo.


Asunto(s)
Cromatografía con Fluido Supercrítico , Croton , Diterpenos , Humanos , Masculino , Ratones , Animales , Croton/química , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/uso terapéutico , Diterpenos/farmacología , Proliferación Celular , Ratones Endogámicos BALB C , Apoptosis , Línea Celular Tumoral
9.
J Adv Res ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609050

RESUMEN

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

10.
Curr Top Med Chem ; 23(28): 2640-2698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818581

RESUMEN

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.


Asunto(s)
Productos Biológicos , Morus , Plantas Medicinales , Morus/química , Productos Biológicos/farmacología , Plantas Medicinales/química , Extractos Vegetales/química , Flavonoides/farmacología , Fitoquímicos/farmacología , Etnofarmacología , Fitoterapia
11.
Curr Res Food Sci ; 6: 100441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756001

RESUMEN

Ganoderma neo-japonicum Imazeki is a rare medicinal mushroom that has been reported to play a role in scavenging free radicals, protecting the liver, and inhibiting tumor cell activity. In this study, crude extracts were prepared, and 47 triterpenoids were identified by Ultra-high-performance liquid chromatography coupled with triple quadrupole time-of flight mass spectrometry (UHPLC-Triple TOF-MS/MS). Then, the crude extracts were subjected to column chromatography for the first time to obtain six fractions (Fr. (a), (b), (c), (d), (e) and (f)). Antioxidant and anti-inflammatory active tracking assays of all fractions found that Fr. (c) exhibited the strongest bioactivity. Subsequently, the chemical composition of Fr. (c) was clarified, and eight triterpenoids were determined in combination with the standard substances. In addition, this study demonstrated that Fr. (c) reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in LPS-stimulated RAW264.7 macrophages. Further studies showed that Fr. (c) could down-regulate the expression level of proteins associated of NF-κB signaling pathway, and upregulated Nrf2 and HO-1 protein level. In conclusion, our study showed that Fr. (c) inhibited LPS-mediated inflammatory response and oxidative stress by activating the Nrf2/HO-1 pathway and inactivating the NF-κB pathway. In the future, with the clearing of its composition and activity mechanism, Fr. (c) of G. neo-japonicum are expected to become a functional food for health and longevity.

12.
Phytomedicine ; 112: 154702, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764096

RESUMEN

BACKGROUND: Nervonic acid (C24:1∆15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. PURPOSE: The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. METHODS: To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. RESULTS: In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. CONCLUSION: These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Cromatografía Liquida , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados/farmacología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
13.
J Ethnopharmacol ; 317: 116770, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37308029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat hyperuricemia, but this particular effect is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY: To research the uric acid (UA)-lowering activity and mechanism of AR and the representative compounds through the constructed hyperuricemia mouse and cellular models. MATERIALS AND METHODS: In our study, the chemical profile of AR was analysed by UHPLC-QE-MS, as well as the mechanism of action of AR and the representative compounds on hyperuricemia was studied through the constructed hyperuricemia mouse and cellular models. RESULTS: The main compounds in AR were terpenoids, flavonoids and alkaloids. Mice group treated with the highest AR dosage showed significantly lower (p < 0.0001) serum uric acid (208 ± 9 µmol/L) than the control group (317 ± 11 µmol/L). Furthermore, UA increased in a dose-dependence manner in urine and faeces. Serum creatinine and blood urea nitrogen standards, as well as xanthine oxidase in mice liver, decreased (p < 0.05) in all cases, indicating that AR could relieve acute hyperuricemia. UA reabsorption protein (URAT1 and GLUT9) was down-regulated in AR administration groups, while the secretory protein (ABCG2) was up-regulated, indicating that AR could promote the excretion of UA by regulating UA transporters via PI3K/Akt signalling pathway. CONCLUSION: This study validated the activity, and revealed the mechanism of AR in reducing UA, which provided experimental and clinical basis for the treatment of hyperuricemia with it.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Ratones , Animales , Ácido Úrico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Proteínas de Transporte de Membrana
14.
Eur J Med Chem ; 237: 114379, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35468514

RESUMEN

Hyperuricemia is a metabolic disease caused by abnormal purine metabolism in the body. Long-term high levels of uric acid in the body will lead to gout and kidney disease. Xanthine oxidase (XOD) is a key enzyme in the pathogenesis of hyperuricemia. In this context, a series of geniposide derivatives were designed, synthesized and evaluated as xanthine oxidase inhibitors. Most of these compounds exhibited potent XOD inhibitory activities in vitro, and representatives 6a, 6c, 6g and 6j were found to be the most potent inhibitors against the enzyme with IC50 values of 2.15 ± 1.03, 1.37± 0.26, 4.14± 0.79 and 1.86± 0.13 µM, which were 33.03-158.37 fold more active than geniposide, respectively. Compounds 6a, 6c, 6g and 6j were evaluated in hyperuricemia mice, and the results demonstrated that compound 6c showed the strongest anti-hyperuricemia and renal protective activity in vivo. Subsequently, the molecular mechanism of compound 6c was studied in this investigation. In vitro cell experiments showed that compound 6c inhibited the inflammation of HK-2 cells under high uric acid conditions by inhibiting the expressions of TGF-ß, TNF-α and IL-1ß, and reduced the cell fibrosis by decreasing the expressions of α-SMA and Collagen I. The results of the mice experiments indicated that compound 6c efficiently decreased the level of serum uric acid (SUA) in hyperuricemia mice by inhibiting the XOD activity. Moreover, compound 6c effectively reduced the urate accumulation in the kidney and simultaneously decreased inflammation by regulating the expression of the TLR4/IκBα/NF-κB signaling pathway. In addition, consistent with cell experiments, compound 6c also reduced renal fibrosis in hyperuricemia mice, which may be due to compound 6c inhibiting the expression of inflammatory factor TGF-ß. Furthermore, a molecular docking study was performed to gain insight into the binding mode of compound 6c with XOD. These results suggest that compound 6c has the potential to be developed into a novel medicine to reduce blood uric acid and treat renal diseases caused by hyperuricemia.


Asunto(s)
Hiperuricemia , Enfermedades Renales , Animales , Fibrosis , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Inflamación/tratamiento farmacológico , Iridoides , Ratones , Simulación del Acoplamiento Molecular , Factor de Crecimiento Transformador beta , Ácido Úrico , Xantina Oxidasa
15.
PLoS One ; 17(5): e0268531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35584139

RESUMEN

Xanthine oxidase (XO) is a key enzyme in the generation and development of hyperuricemia. Thiazolidine-2-thione, a typical heterocyclic compound, have been widely used in the field of drug synthesis. In this study, a series of novel thiazolidine-2-thione derivatives were synthesized as XO inhibitors, and the XO inhibitory potencies of obtained compounds were evaluated by in vitro enzyme catalysis. The result shown that compound 6k behaved the strongest XO inhibitory activity with an IC50 value of 3.56 µmol/L, which was approximately 2.5-fold more potent than allopurinol. The structure-activity relationship revealed that the phenyl-sulfonamide group was indispensable for thiazolidine-2-thione derivatives to produce XO inhibitory activity. The enzyme inhibition kinetics analyses confirmed that compound 6k exerted a mixed-type XO inhibition. Additionally, the molecular docking results suggested that the 4-fluorophenyl-sulfonyl moiety could interact with Gly260 and Ile264 in the innermost part of the active pocket through 2 hydrogen bonds, while the thiazolidinethione moiety could form two hydrogen bonds with Glu263 and Ser347 in hydrophobic pockets. In summary, the results described above suggested that compound 6k could be a valuable lead compound for the treatment of hyperuricemia as a novel XO inhibitor.


Asunto(s)
Hiperuricemia , Xantina Oxidasa , Inhibidores Enzimáticos/química , Humanos , Hiperuricemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazolidinas
16.
Eur J Pharmacol ; 930: 175157, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35870480

RESUMEN

Hyperuricemia is a common metabolic disease and is one of the factors that could induce chronic kidney disease (CKD). Geniposide (GEN) is a typical natural iridoid glucoside compound with a series of biological activities, but the poor bioavailability of GEN limits its clinical application. In this context, the pharmacological activity of the geniposide-phospholipid complex (GEN-PLC) in ameliorating posthyperuricemia CKD was evaluated by in vitro and in vivo experiments in this study. In vitro cell experiments showed that GEN-PLC treatment markedly decreased inflammatory cytokine levels and reactive oxygen species levels compared with those of GEN in uric acid-treated HKC cells. In vivo research results confirmed that a high concentration of uric acid could cause CKD by increasing inflammatory cytokines and reactive oxygen species in hyperuricemic mice. At the same time, GEN-PLC could regulate the PI3K/AKT/NF-κB and Keap1/Nrf2/HO-1 signaling pathways to effectively inhibit the inflammatory response and oxidative stress, thereby ameliorating posthyperuricemia CKD, and the therapeutic effect was better than that of GEN. In addition, the preparation technology of GEN-PLC was optimized, and the physiochemical analysis explained the intermolecular interactions of the two components. Based on the research results, GEN-PLC could enhance the bioavailability of GEN and become a promising candidate for clinical drug development.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Insuficiencia Renal Crónica , Animales , Inflamación/tratamiento farmacológico , Iridoides/farmacología , Iridoides/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolípidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Ácido Úrico/farmacología
17.
Food Chem X ; 15: 100432, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36211743

RESUMEN

The study aimed to characterize physicochemical, thermal, and rheological properties of cashew nut starch (CNS) and then compare the obtained results with the properties of potato and corn starches. CNS showed higher gelatinization temperatures (112.29 °C) than those noted for potato and maize starches (78.44-94.65 °C). In addition, CNS had higher peak viscosity (19.03 mPa·s) than high amylose corn starch. The static shear rheological test indicated that the CNS followed a pseudoplastic behavior. In addition, CNS sample showed a thixotropic patter, which was less pronounced than that observed for potato starch, but higher than the value reported for high amylose corn starch. These results demonstrated that the shear resistance of CNS was lower than high amylose corn starch, but higher than potato starch. The storage and loss modulus (G' and G", respectively) of the CNS were higher than those reported for the rest of samples. In this line, elastic properties were predominant in CNS sample. In conclusion, results from this study provided insight into physicochemical and structural properties of cashew nut starch, which could represent a preliminary step for its future application in food processing.

18.
Steroids ; 165: 108767, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212127

RESUMEN

Two new ergostane-type steroids (1 and 2) have been isolated from the fruiting body of a medicinal macro fungus Ganoderma lingzhi. The structures including the absolute configurations of them were elucidated by a combination of different spectroscopic analyses especially 13C NMR and ECD calculations. Compound 2 features an unusual 1,2-dioxolane moiety. Our bioassays revealed that the two steroids showed remarkable cytotoxicity against human A549 (lung) and MCF-7 (breast) tumor cell lines, with IC50 values ranging from 5.15 to 8.57 µg/mL.


Asunto(s)
Ergosterol/análogos & derivados , Antineoplásicos , Línea Celular Tumoral , Cuerpos Fructíferos de los Hongos , Ganoderma , Humanos , Esteroides
19.
Nat Prod Res ; 35(22): 4479-4485, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32233665

RESUMEN

Supercritical fluid extraction was applied to obtain the lower polarity extracts from Croton crassifolius roots, and chemical investigation of which led to the isolation and identification of two new diterpenoids, named crassifolius P (1) and crassifolius Q (2). In vitro anti-proliferative activities of compounds 1 and 2 on A549, Hep-G2 and Hela tumor cell lines were evaluated. The two new compounds exhibited obvious selectivity to tumor cells with IC50 values ranging from 20.43 ± 1.18 µM to 25.72 ± 1.32 µM.


Asunto(s)
Cromatografía con Fluido Supercrítico , Croton , Diterpenos , Línea Celular Tumoral , Diterpenos/farmacología , Estructura Molecular , Raíces de Plantas
20.
Phytochemistry ; 170: 112192, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726325

RESUMEN

Chemical fractionation of the ethanolic extract of Eclipta prostrata yielded a series of unreported terpenoid constituents, including a rare 6/6/6/6-fused tetracyclic triterpenoid, a pentacyclic triterpenoid, two pentacyclic triterpenoid saponins, a diterpenoid and a sesquiterpenoid. Structures were assigned to these compounds on the basis of comprehensive spectroscopic analyses, with the absolute configurations of the tetracyclic triterpenoid, the diterpenoid and the sesquiterpenoid being determined via explanation of electronic circular dichroism data. Screening of these isolates in an array of bioassays revealed antibacterial, cytotoxic and α-glucosidase inhibitory activities for selective compounds. Of particular interest, the tetracyclic triterpenoid showed very strong inhibition against α-glucosidase with an IC50 of 0.82 ±â€¯0.18 µM, being 103-fold as active as the positive control acarbose.


Asunto(s)
Antibacterianos/farmacología , Eclipta/química , Inhibidores de Glicósido Hidrolasas/farmacología , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Terpenos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Neoplasias/patología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Terpenos/química , Terpenos/aislamiento & purificación , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda