RESUMEN
Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.
RESUMEN
This research delves into the effectiveness of Ginkgolide B (GB), a compound from Ginkgo biloba, in combating cell death caused by glaucoma, with a focus on mitochondrial impairment and the mitochondrial permeability transition pore (mPTP). Utilizing models of high intraocular pressure and in vitro glaucoma simulations, the study investigates GB's impact on retinal progenitor cells (RPCs) under oxygen-glucose deprivation/reperfusion (OGD/R) and in a rat glaucoma model. The study methodologies included apoptosis assessment, apoptotic marker analysis via Western blot, and mitochondrial structure and function evaluation. The findings reveal that GB notably decreases apoptosis in RPCs exposed to OGD/R in vitro, and reduces ischemia-reperfusion damage in vivo. GB's protective role is attributed to its ability to preserve mitochondrial integrity, maintain membrane potential, regulate calcium levels, and inhibit mPTP opening. These results underscore GB's potential as a therapeutic agent for acute primary angle-closure glaucoma, highlighting its capability to alleviate mitochondrial damage and apoptosis in RPCs and retinal nerve fiber layer cells.
Asunto(s)
Glaucoma , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Ratas , Ginkgólidos/farmacología , Lactonas/farmacología , Glucosa , OxígenoRESUMEN
MAIN CONCLUSION: Allotetraploid wheat reflects evolutionary divergence and domestication convergence in the karyotypic and phenotypic evolution, accompanied with the transformation from r- strategy to K- strategy in reproductive fitness. Allotetraploid wheat, the progenitor of hexaploidy bread wheat, has undergone 300,000 years of natural evolution and 10,000 years of domestication. The variations in karyotype and phenotype as well as fertility fitness have not been systematically linked. Here, by combining fluorescent in situ hybridization with the quantification of phenotypic and reproductive traits, we compared the karyotype, vegetative growth phenotype and reproductive fitness among synthesized, wild and domesticated accessions of allotetraploid wheat. We detected that the wild accessions showed dramatically high frequencies of homologous recombination and copy number variations of simple sequence repeats (SSR) comparing with synthetic and domesticated accessions. The phenotypic traits reflected significant differences among the populations shaped by distinct evolutionary processes. The diversity observed in wild accessions was significantly greater than that in domesticated ones, particularly in traits associated with vegetative growth and spike morphology. We found that the active pollen of domesticated accessions exhibited greater potential of germination, despite a lower rate of active pollen compared with the wild accessions, indicating a transformation in reproductive fitness strategy for pollen development in domesticated accessions compared to the wild accessions, from r-strategy to K-strategy. Our results demonstrate the condensation of karyotype and phenotype from natural wild accessions to domesticated accessions in allotetraploid wheats. Ecological strategy transformation should be seriously considered from evolution to domestication in polyploid plants, especially crops, which may provide a perspective on the adaptive evolution of polyploid plants.
Asunto(s)
Domesticación , Fenotipo , Tetraploidía , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Evolución Biológica , Cariotipo , Reproducción/genética , Polen/genética , Polen/crecimiento & desarrollo , Repeticiones de Microsatélite/genética , Hibridación Fluorescente in Situ , Variaciones en el Número de Copia de ADN/genéticaRESUMEN
Metal-organic framework (MOF)-based hybrid membranes still face many unsolved difficulties in the field of liquid separation, with a reliable production technique standing out, in particular, for the water-stable MOF membranes. In this study, zeolitic imidazolate framework-8 (ZIF-8) with acceptable water stability, favorable polymer affinity, and high selectivity was meticulously grafted on commercial poly(vinylidene fluoride) (PVDF) via substrate carboxylation-assisted etching and then overlaid onto PVDF to fabricate a novel hybrid membrane by a layer-by-layer self-assembly method. The optimal membrane manufacturing conditions, including assembly time (10 min), Hmim/Zn2+ molar ratio (8:1), and optimal layer number (three layers), were thoroughly investigated for cutting-off ofloxacin in water filtration. Under low pressure, a nanofiltration scale permeability of about 199.2 L m-2 h-1 MPa-1 and 97.9% rejection of ofloxacin were obtained in bench-scale tests based on the synergistic effect of the Donnan effect and steric hindrance. More significantly, the resulting hybrid membrane demonstrated excellent hydrophilicity, high antifouling, and mechanical and repeatability performances, suggesting promising application possibilities in real-world wastewater filtering settings.
RESUMEN
BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.
Asunto(s)
Anticuerpos Neutralizantes , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Péptidos , Virus del Síndrome Respiratorio y Reproductivo Porcino , Receptores de Superficie Celular , Anticuerpos de Dominio Único , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Animales , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Porcinos , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores de Superficie Celular/inmunología , Antígenos CD/inmunología , Antígenos CD/metabolismo , Anticuerpos Neutralizantes/inmunología , Péptidos/química , Péptidos/farmacología , Péptidos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Ratones , Replicación Viral/efectos de los fármacos , Línea CelularRESUMEN
In recent years, the incidence of cardiac arrhythmias has been on the rise because of changes in lifestyle and the aging population. Electrocardiograms (ECGs) are widely used for the automated diagnosis of cardiac arrhythmias. However, existing models possess poor noise robustness and complex structures, limiting their effectiveness. To solve these problems, this paper proposes an arrhythmia recognition system with excellent anti-noise performance: a convolutionally optimized broad learning system (COBLS). In the proposed COBLS method, the signal is convolved with blind source separation using a signal analysis method based on high-order-statistic independent component analysis (ICA). The constructed feature matrix is further feature-extracted and dimensionally reduced using principal component analysis (PCA), which reveals the essence of the signal. The linear feature correlation between the data can be effectively reduced, and redundant attributes can be eliminated to obtain a low-dimensional feature matrix that retains the essential features of the classification model. Then, arrhythmia recognition is realized by combining this matrix with the broad learning system (BLS). Subsequently, the model was evaluated using the MIT-BIH arrhythmia database and the MIT-BIH noise stress test database. The outcomes of the experiments demonstrate exceptional performance, with impressive achievements in terms of the overall accuracy, overall precision, overall sensitivity, and overall F1-score. Specifically, the results indicate outstanding performance, with figures reaching 99.11% for the overall accuracy, 96.95% for the overall precision, 89.71% for the overall sensitivity, and 93.01% for the overall F1-score across all four classification experiments. The model proposed in this paper shows excellent performance, with 24 dB, 18 dB, and 12 dB signal-to-noise ratios.
Asunto(s)
Algoritmos , Arritmias Cardíacas , Electrocardiografía , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador , Arritmias Cardíacas/diagnóstico , Humanos , Electrocardiografía/métodos , Bases de Datos Factuales , Aprendizaje Automático , Relación Señal-RuidoRESUMEN
Traumatic brain injury is a leading cause of neuroinflammation and anxiety disorders in young adults. Immune-targeted therapies have garnered attention for the amelioration of TBI-induced anxiety. A previous study has indicated that voluntary exercise intervention following TBI could reduce neuroinflammation. It is essential to determine the effects of voluntary exercise after TBI on anxiety via inhibiting neuroinflammatory response. Mice were randomly divided into four groups (sham, TBI, sham + voluntary wheel running (VWR), and TBI + VWR). One-week VWR was carried out on the 2nd day after trauma. The neurofunction of TBI mice was assessed. Following VWR, anxiety behavior was evaluated, and neuroinflammatory responses in the perilesional cortex were investigated. Results showed that after one week of VWR, neurofunctional recovery was enhanced, while the anxiety behavior of TBI mice was significantly alleviated. The level of pro-inflammatory factors decreased, and the level of anti-inflammatory factors elevated. Activation of nucleotide oligomerization domain-like thermal receptor protein domain associated protein 3 (NLRP3) inflammasome was inhibited significantly. All these alterations were consistent with reduced microglial activation at the perilesional site and positively correlated with the amelioration of anxiety behavior. This suggested that timely rehabilitative exercise could be a useful therapeutic strategy for anxiety resulting from TBI by targeting neuroinflammation.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Actividad Motora , Ratones , Animales , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Inflamación/tratamiento farmacológico , Ansiedad/etiología , Ansiedad/terapia , Ratones Endogámicos C57BLRESUMEN
The potential of neural stem cells (NSCs) for neurological disorders the treatment has relied in large part upon identifying the NSCs fate decision. The hormone leptin has been reported to be a crucial regulator of brain development, able to influence the glial and neural development, yet, the underlying mechanism of leptin acting on NSCs' biological characteristics is still poorly understood. This study aims to investigate the role of leptin in the biological properties of NSCs. In this study, we investigate the possibility that leptin may regulate the NSCs' fate decision, which may promote the proliferation and neuronal differentiation of NSCs and thus act positively in neurological disorders. NSCs from the embryonic cerebral cortex were used in this study. We used CCK-8 assay, ki67 immunostaining, and FACS analysis to confirm that 25-100 ng/mL leptin promotes the proliferation of NSCs in a concentration-dependent pattern. This change was accompanied by the upregulation of p-AKT and p-ERK1/2, which are the classical downstream signaling pathways of leptin receptors b (LepRb). Inhibition of PI3K/AKT or MAPK/ERK signaling pathways both abolished the effect of leptin-induced proliferation. Moreover, leptin also enhanced the directed neuronal differentiation of NSCs. A blockade of the PI3K/AKT pathway reversed leptin-stimulated neurogenesis, while a blockade of JAK2/STAT3 had no effect on it. Taken together, our results support a role for leptin in regulating the fate of NSCs differentiation and promoting NSCs proliferation, which could be a promising approach for brain repair via regulating the biological characteristics of NSCs.
Asunto(s)
Enfermedades del Sistema Nervioso , Células-Madre Neurales , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Leptina/farmacología , Leptina/metabolismo , Proliferación Celular , Transducción de Señal , Células-Madre Neurales/metabolismo , Diferenciación Celular , Enfermedades del Sistema Nervioso/metabolismo , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismoRESUMEN
Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system's performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.
Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Dispositivos Electrónicos Vestibles , Humanos , Calidad de Vida , Potenciales Relacionados con Evento P300RESUMEN
Excess salt intake harms the brain health and cognitive functions, but whether a maternal high-salt diet (HSD) affects the brain development and neural plasticity of offspring remains unclear. Here, using a range of behavioral tests, we reported that the offspring of maternal HSD subjects exhibited short- and long-term memory deficits, especially in spatial memory in adulthood. Moreover, impairments in synaptic transmission and plasticity in the hippocampus were observed in adult offspring by using in vivo electrophysiology. Consistently, the number of astrocytes but not neurons in the hippocampus of the offspring from the HSD group were significantly decreased, and ERK and AKT signaling pathways involved in neurodevelopment were highly activated only during juvenile. In addition, the expression of synaptic proteins decreased both in juvenile and adulthood, and this effect might be involved in synaptic dysfunction. Collectively, these data demonstrated that the maternal HSD might cause adult offspring synaptic dysfunction and memory loss. It is possibly due to the reduction of astrocytes in juvenile.
Asunto(s)
Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Cloruro de Sodio Dietético/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , EmbarazoRESUMEN
Fluoroacetamide (Mw = 77.06) is a lethal rodenticide to humans and animals which is still frequently abused in food storage somewhere in China. The production of antibodies for fluoroacetamide is difficult due to its high toxicity to animals, which limits the application of immunoassay method in poison detection. In this work, aptamers targeting N-fluoroacetyl glycine as an analog of fluoroacetamide were selected by a specific systematic evolution of ligands by exponential enrichment (SELEX) strategy. The binding ability of the selected aptamers to fluoroacetamide was identified using surface plasmon resonance (SPR)-based assay. The estimated KD values in the low micromolar range showed a good affinity of these aptamers to the target. Our work verified that the SELEX strategy has the potential for developing aptamers targeted to small molecular toxicants and aptamers can be employed as new recognition elements instead of antibodies for poison detection.
Asunto(s)
Aptámeros de Nucleótidos/química , Bioensayo , ADN de Cadena Simple/química , Fluoroacetatos/aislamiento & purificación , Glicina/análogos & derivados , Rodenticidas/aislamiento & purificación , Animales , Aptámeros de Nucleótidos/síntesis química , Secuencia de Bases , ADN de Cadena Simple/síntesis química , Glicina/química , Humanos , Ligandos , Imitación Molecular , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros , Sensibilidad y Especificidad , Alineación de Secuencia , Albúmina Sérica Bovina/química , Resonancia por Plasmón de SuperficieRESUMEN
OBJECTIVE: To select specific DNA aptamer for determining ketamine by FluMag-SELEX. METHODS: Based on magnetic beads with tosyl surface modification as solid carrier and ketamine as target, a random ssDNA library with total length of 78 bp in vitro was compounded. After 13 rounds screening, DNA cloning and sequencing were done. Primary and secondary, structures were analyzed. The affinity, specificity and Kd values of selected aptamer were measured by monitoring the fluorescence intensity. RESULTS: Two ssDNA aptamers (Apt#4 and Apt#8) were successfully selected with high and specific abilities to bind ketamine as target with Kd value of 0.59 and 0.66 µmol/L. The prediction of secondary structure was main stem-loop and G-tetramer. The stem was the basis of stability of aptamer's structure. And loop and G-tetramer was the key of specific binding of ketamine. CONCLUSION: FluMag-SELEX can greatly improve the selection efficiency of the aptamer, obtain the ketamine-binding DNA aptamer, and develop a new method for rapid detection of ketamine.
Asunto(s)
Aptámeros de Nucleótidos/metabolismo , ADN de Cadena Simple/genética , Ketamina/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/genética , ADN , Técnicas In Vitro , Oligonucleótidos , Técnica SELEX de Producción de Aptámeros/instrumentaciónRESUMEN
As one genotype of porcine circovirus (PCV) identified in 2016, PCV3 has brought huge hidden dangers to the global swine industry together with PCV2. Virus-like particles (VLPs) of capsid protein (Cap) of PCV2 serve as an alternative nano-antigen delivery strategy to efficiently induce antiviral immune response against PCV2 and/or other covalently displayed swine pathogens. However, the current understanding is limited on the capability of PCV3 as a nano-vaccine vehicle. Here we systematically compared the characteristics and the immunogenic efficacy of PCV3 Cap (Cap3) and PCV2 Cap (Cap2) in a VLP form. Cap3 VLPs presented higher internalization efficiency into cells and cytokines production compared to those of Cap2. Meanwhile, cross-reactive immunity between Cap3 VLPs and Cap2 VLPs was detected. Furthermore, to evaluate the function of Cap3 VLPs and Cap2 VLPs as vaccine vehicles carrying foreign proteins, the non-structural protein 6 of porcine reproductive and respiratory syndrome virus (PRRSV) was fused to C-terminus of Cap. Cap3-based chimeric particles induced a higher level of nsp6-specific immune response and PRRSV inhibition. Collectively, these self-assembling, Cap-based VLPs offer a compelling platform for enhancing the effectiveness of subunit vaccinations against newly emerging diseases and hold great promise for the development of Cap3-based chimeric subunit vaccines.
Asunto(s)
Proteínas de la Cápside , Circovirus , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Circovirus/inmunología , Circovirus/genética , Porcinos , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Anticuerpos Antivirales/inmunología , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/inmunologíaRESUMEN
The interaction between microglia and astrocytes exhibits a relatively balanced state in order to maintain homeostasis in the healthy central nervous system (CNS). Disease stimuli alter microglia-astrocyte interaction patterns and elicit cell-type-specific responses, resulting in their contribution to various pathological processes. Here, we review the similarities and differences in the activation modes between microglia and astrocytes in various scenarios, encompassing different stages of neural development and a wide range of neural disorders. The aim is to provide a comprehensive understanding of their roles in neural development and regeneration and guiding new strategies for restoring CNS homeostasis.
Asunto(s)
Astrocitos , Microglía , Astrocitos/patología , Microglía/patología , Sistema Nervioso Central/patología , NeurogénesisRESUMEN
PRRSV (Porcine Reproductive and Respiratory Syndrome Virus) is a major swine pathogen causing economic losses. To the date, effective broad PRRSV inhibitory strategies have not been available in practice yet. Targeting the key viral receptor CD163 to block PRRSV entry has emerged as an alternative approach beside vaccines for PRRSV inhibition. As an effective therapeutic tool, nanoantibodies (Nbs) have been widely used in antiviral research. In this study, a phage display VHH library was constructed for the selection of Nbs against porcine CD163 scavenger receptor cysteine-rich 5-9 domain (SRCR5-9). After five rounds of bio-panning and indirect ELISA, seven CD163-specific Nbs (Nb1-Nb7) were identified. All obtained Nbs displayed strong affinity to CD163 receptor and excellent antiviral activity. In particular, Nb2 exhibited significant broad inhibitory effects on variable PRRSV lineages and downregulated virus-related NF-κB signaling. Further studies suggested that Nbs mainly exerted antiviral functions by interfering with virus attachment stage, and also decreased the transcription of CD163. The conformational epitopes recognized by Nbs were localized in the SRCR5 domain of CD163, a crucial region in PRRSV infection. Overall, our findings provide a novel insight into the biofunction of CD163 in antiviral infection and the development of broad-spectrum strategies against PRRSV.
Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Anticuerpos de Dominio Único , Porcinos , Animales , Anticuerpos de Dominio Único/farmacología , Antivirales/farmacologíaRESUMEN
Traumatic brain injury (TBI) leads to reactive astrogliosis that impedes neural repair/regeneration. It has been proven that SOCS3 attenuates astrocyte activation by inhibiting the JAK2-STAT3 pathway. However, whether the kinase inhibitory region (KIR) of SOCS3 can be directly applied to mediate astrocyte activation after TBI is not clear. The present study aimed at investigating the inhibitory effect of KIR on reactive astrogliosis and its potential neuroprotection after TBI insult. For this purpose, A TBI model was developed by the free impact of heavy objects in adult mice. KIR was linked to the TAT peptide (TAT-KIR) to facilitate cell membrane penetration and intracranially injected into the cerebral cortex adjacent to the TBI lesion. Then reactive astrogliosis, activity of JAK2-STAT3 pathway, neuron loss, and function deficit were observed. Our results showed a decrease in neuron loss and an improvement in neural function. Meanwhile, Intracranial injection of TAT-KIR in TBI mice demonstrated a reduction of GFAP-positive astrocytes as well as C3/GFAP double-labeled A1 reactive astrocytes. Western blot analysis illustrated that the activity of the JAK2-STAT3 pathway was significantly inhibited by TAT-KIR. We conclude that exogenous treatment TAT-KIR, through suppression of JAK2-STAT3 activity, inhibits TBI -induced reactive astrogliosis induced, thereby alleviating the loss of neurons and relieving the neural function deficit. This investigation suggests that TAT-KIR could be a potential therapeutic strategy for enhancing neural regeneration following.
Asunto(s)
Astrocitos , Lesiones Traumáticas del Encéfalo , Ratones , Animales , Astrocitos/metabolismo , Gliosis/patología , Cicatriz/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Neuronas/metabolismoRESUMEN
BACKGROUND AND OBJECTIVE: Rates of aging vary markedly among individuals, and biological age serves as a more reliable predictor of current health status than does chronological age. As such, the ability to predict biological age can support appropriate and timely active interventions aimed at improving coping with the aging process. However, the aging process is highly complex and multifactorial. Therefore, it is more scientific to construct a prediction model for biological age from multiple dimensions systematically. METHODS: Physiological and biochemical parameters were evaluated to gage individual health status. Then, age-related indices were screened for inclusion in a model capable of predicting biological age. For subsequent modeling analyses, samples were divided into training and validation sets for subsequent deep learning model-based analyses (e.g. linear regression, lasso model, ridge regression, bayesian ridge regression, elasticity network, k-nearest neighbor, linear support vector machine, support vector machine, and decision tree models, and so on), with the model exhibiting the best ability to predict biological age thereby being identified. RESULTS: First, we defined the individual biological age according to the individual health status. Then, after 22 candidate indices (DNA methylation, leukocyte telomere length, and specific physiological and biochemical indicators) were screened for inclusion in a model capable of predicting biological age, 14 age-related indices and gender were used to construct a model via the Bagged Trees method, which was found to be the most reliable qualitative prediction model for biological age (accuracy=75.6%, AUC=0.84) by comparing 30 different classification algorithm models. The most reliable quantitative predictive model for biological age was found to be the model developed using the Rational Quadratic method (R2=0.85, RMSE=8.731 years) by comparing 24 regression algorithm models. CONCLUSIONS: Both qualitative model and quantitative model of biological age were successfully constructed from a multi-dimensional and systematic perspective. The predictive performance of our models was similar in both smaller and larger datasets, making it well-suited to predicting a given individual's biological age.
Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Adolescente , Teorema de Bayes , Envejecimiento/genética , Metilación de ADNRESUMEN
AIMS: Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions. METHODS: NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and ß tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting. RESULTS: Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression. CONCLUSION: TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs.
Asunto(s)
Interleucina-6 , Células-Madre Neurales , Animales , Ratas , Diferenciación Celular , Proliferación Celular , Interleucina-6/metabolismo , Células-Madre Neurales/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/metabolismoRESUMEN
Background: Electroencephalogram (EEG)-based brain-computer interface (BCI) systems are widely utilized in various fields, including health care, intelligent assistance, identity recognition, emotion recognition, and fatigue detection. P300, the main event-related potential, is the primary component detected by EEG-based BCI systems. Existing algorithms for P300 classification in EEG data usually perform well when tested in a single participant, although they exhibit significant decreases in accuracy when tested in new participants. We attempted to address this lack of generalizability associated with existing classification methods using a novel convolutional neural network (CNN) model developed using logistic regression (LR). Materials and Methods: We proposed an LR-CNN model comprising two parts: a combined LR-based memory model and a CNN-based generalization model. The LR-based memory model can learn the individual features of participants and addresses the decrease in accuracy caused by individual differences when applied to new participants. The CNN-based generalization model can learn the common features among participants, thereby reducing overall classification bias and improving overall classification accuracy. Results: We compared our method with existing, commonly used classification methods through three different sets of experiments. The experimental results indicated that our method could learn individual differences among participants. Compared with other commonly used classification methods, our method yielded a marked improvement (>90%) in classification among new participants. Conclusion: The accuracy of the proposed model in the face of new participants is better than that of existing, commonly used classification methods. Such improvements in cross-subject test accuracy will aid in the development of BCI systems.
RESUMEN
Maternal obesity or exposure to a high-fat diet (HFD) has an irreversible impact on the structural and functional development of offspring brains. This study aimed to investigate whether maternal HFD during pregnancy and lactation impairs dentate gyrus (DG) neurogenesis in offspring by altering neural stem cells (NSCs) behaviors. Pregnant Sprague-Dawley rats were fed a chow diet (CHD) or HFD (60% fat) during gestation and lactation. Pups were collected on postnatal day 1 (PND 1), PND 10 and PND 21. Changes in offspring body weight, brain structure and granular cell layer (GCL) thickness in the hippocampus were analyzed. Hippocampal NSCs behaviors, in terms of proliferation and differentiation, were investigated after immunohistochemical staining with Nestin, Ki67, SOX2, Doublecortin (DCX) and NeuN. Maternal HFD accelerated body weight gain and brain structural development in offspring after birth. It also reduced the number of NSCs and their proliferation, leading to a decrease in NSCs pool size. Furthermore, maternal HFD intensified NSCs depletion and promoted neuronal differentiation in the early postnatal development period. These findings suggest that maternal HFD intake significantly reduced the amount and capability of NSCs via reducing type-2 NSCs and promoting premature neuronal differentiation during postnatal hippocampal development.