Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Am J Bot ; 111(6): e16355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831659

RESUMEN

PREMISE: Theories of plant-herbivore interactions hold that seedlings are more vulnerable to herbivory in warmer and more stable climates at lower elevations. Hypotheses of plant apparency, resource concentration, and resource availability have been proposed to explain variability in leaf herbivory. However, seasonal differences in the effects of these hypotheses on leaf herbivory on seedlings remain unclear. METHODS: We evaluated the three herbivory hypotheses by comparing the percentage and frequency of leaf herbivory in understory broadleaf seedlings in a subtropical forest in May (spring) and October (autumn) along an elevational gradient (290-1370 m a.s.l.). In total, we measured 2890 leaves across 696 seedlings belonging to 95 species and used beta regressions to test the effects of plant apparency (e.g., leaf area, seedling height), resource concentration (e.g., plant species diversity), and resource availability (e.g., canopy openness, soil available N and P) on leaf herbivory. RESULTS: Seedlings exhibited unimodal patterns of leaf herbivory along elevation, with drivers of leaf herbivory varying by the month. Variation in the frequency of leaf herbivory was best explained by the resource concentration hypothesis (e.g., plant species diversity) in both months, and herbivory was lower on seedlings in sites with higher plant diversity. Plant apparency hypothesis (e.g., leaf area, seedling height) was weakly supported only in spring, and the evidence for resource availability hypothesis (e.g., canopy openness, soil nutrients) was mixed. CONCLUSIONS: This study supports the resource concentration hypothesis and reveals the importance of seasonal difference on understanding leaf herbivory patterns and the drivers of plant diversity in subtropical forests.


Asunto(s)
Herbivoria , Insectos , Hojas de la Planta , Plantones , Plantones/fisiología , Animales , Insectos/fisiología , Hojas de la Planta/fisiología , Estaciones del Año , Altitud , Bosques
2.
Environ Res ; 204(Pt B): 112037, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34582802

RESUMEN

A heterojunction of NiFe layered double hydroxide (NiFe LDH)-Bi2MoO6 (BMO) loaded on reduced graphene oxide (RGO) sheets was synthesized via an eco-friendly solvothermal reaction. The structural characterization shows that NiFe LDH-BMO heterojunctions are well-distributed on the surface of silk-like transparent RGO sheets. The modification of BMO by NiFe LDH and RGO greatly enhances the photocatalytic performance of BMO for degradation of tetracycline (TC) under visible light. The photocatalyst prepared with 3 wt% RGO shows the highest activity and cycle stability. TC can be completely removed in 80 min, which is about 8.7 times that pure BMO, and showing excellent reusability even after five cycles. The excellent enhancement of photocatalytic performance of NiFe LDH-BMO/RGO composite is attributed to the unique sheet-on-sheet hierarchical heterostructure combined with RGO sheets, facilitating the visible light absorption and photogenerated charge carriers separation.


Asunto(s)
Hidróxidos , Tetraciclina , Bismuto , Catálisis , Grafito , Molibdeno , Fotólisis
3.
Nanotechnology ; 33(3)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34633301

RESUMEN

Developing green materials applied in lithium-ion batteries is of significant importance for the present-day society. Herein, a feasible strategy to construct Fe3O4nanoparticles (NPs) embedded in three-dimensional (3D) honeycomb biochar derived from pleurotus eryngii was proposed. The obtained material consists of Fe3O4NPs (35-85 nm) encapsulated in 3D honeycomb biochar possesses a high specific capacity of 723 mAh g-1at 1.5 A g-1after 1000 cycles. The effectively enhanced cycling life of Fe3O4@C nanocomposites can be ascribed to the small Fe3O4NPs provide lower degree of cracking and high specific capacity, while the honeycomb biochar function like a cage to inhibit huge volume change of Fe3O4NPs during the charge-discharge process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda