Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
FASEB J ; 30(7): 2549-56, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27022162

RESUMEN

The accumulation of unfolded proteins within the endoplasmic reticulum (ER) causes ER stress and activation of unfolded protein response (UPR). This response can trigger ER-associated degradation and autophagy, which clear unfolded proteins and restore protein homeostasis. Recently, it has become clear that ubiquitination plays an important role in the regulation of autophagy. In the present study, we investigated how the E3 ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 (Nedd4-2) interacts with ER stress and autophagy. In mice, we found that an increase in the expression of Nedd4-2, which was concomitant with the activation of the UPR and autophagy, was caused by a prolonged high-fructose and high-fat diet that induces ER stress in the liver. Pharmacologic induction of ER stress also led to an increase in Nedd4-2 expression in cultured cells, which was coincident with UPR and autophagy activation. The inhibition of inositol-requiring enzyme 1 significantly suppressed Nedd4-2 expression. Moreover, increased Nedd4-2 expression in vivo was closely associated with the activation of inositol-requiring enzyme 1 and increased expression of the spliced form of X-box binding protein 1. Furthermore, knockdown of Nedd4-2 in cultured cells suppressed both basal autophagy and ER stress-induced autophagy, whereas overexpression of Nedd4-2-induced autophagy. Taken together, our findings provide evidence that Nedd4-2 is up-regulated in response to ER stress by the spliced form of X-box binding protein 1 and that this is important in the induction of an appropriate autophagic response.-Wang, H. Sun, R.-Q., Camera, D., Zeng, X.-Y., Jo, E., Chan, S. M. H., Herbert, T. P., Molero, J. C., Ye, J.-M. Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba/fisiología , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Hígado/metabolismo , Masculino , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitina-Proteína Ligasas/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
Biochim Biophys Acta ; 1852(1): 156-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25458704

RESUMEN

The unfolded protein response (UPR) pathways have been implicated in the development of hepatic insulin resistance during high fructose (HFru) feeding. The present study investigated their roles in initiating impaired insulin signaling transduction in the liver induced by HFru feeding in mice. HFru feeding resulted in hepatic steatosis, increased de novo lipogenesis and activation of two arms of the UPR pathways (IRE1/XBP1 and PERK/eIF2α) in similar patterns from 3days to 8weeks. In order to identify the earliest trigger of impaired insulin signaling in the liver, we fed mice a HFru diet for one day and revealed that only the IRE1 branch was activated (by 2-fold) and insulin-mediated Akt phosphorylation was blunted (~25%) in the liver. There were significant increases in phosphorylation of JNK (~50%) and IRS at serine site (~50%), protein content of ACC and FAS (up to 2.5-fold) and triglyceride level (2-fold) in liver (but not in muscle or fat). Blocking IRE1 activity abolished increases in JNK activity, IRS serine phosphorylation and protected insulin-stimulated Akt phosphorylation without altering hepatic steatosis or PKCε activity, a key link between lipids and insulin resistance. Our findings together suggest that activation of IRE1-JNK pathway is a key linker of impaired hepatic insulin signaling transduction induced by HFru feeding.


Asunto(s)
Fructosa/administración & dosificación , Fructosa/metabolismo , Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Triglicéridos/metabolismo , Animales , Resistencia a la Insulina , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada
3.
Biochim Biophys Acta ; 1852(7): 1511-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25906681

RESUMEN

Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat.


Asunto(s)
Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Hígado Graso/metabolismo , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Insulina/metabolismo , Gotas Lipídicas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/etiología , Gotas Lipídicas/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Transducción de Señal
4.
Endocrinology ; 156(1): 169-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25343276

RESUMEN

High-carbohydrate (mainly fructose) consumption is a major dietary factor for hepatic insulin resistance, involving endoplasmic reticulum (ER) stress and lipid accumulation. Because autophagy has been implicated in ER stress, the present study investigated the role of autophagy in high-fructose (HFru) diet-induced hepatic ER stress and insulin resistance in male C57BL/6J mice. The results show that chronic HFru feeding induced glucose intolerance and impaired insulin signaling transduction in the liver, associated with ER stress and the accumulation of lipids. Intriguingly, hepatic autophagy was suppressed as a result of activation of mammalian target of rapamycin. The suppressed autophagy was detected within 6 hours after HFru feeding along with activation of both inositol-requiring enzyme 1 and protein kinase RNA-like endoplasmic reticulum kinase pathways. These events occurred prior to lipid accumulation or lipogenesis and were sufficient to blunt insulin signaling transduction with activation of c-Jun N-terminal kinase/inhibitory-κB kinase and serine phosphorylation of insulin receptor substrate 1. The stimulation of autophagy attenuated ER stress- and c-Jun N-terminal kinase/inhibitory-κB kinase-associated impairment in insulin signaling transduction in a mammalian target of rapamycin -independent manner. Taken together, our data suggest that restoration of autophagy functions disrupted by fructose is able to alleviate ER stress and improve insulin signaling transduction.


Asunto(s)
Autofagia , Retículo Endoplásmico/fisiología , Fructosa/toxicidad , Insulina/metabolismo , Hígado/fisiología , Estrés Fisiológico/fisiología , Animales , Carbohidratos de la Dieta/toxicidad , Intolerancia a la Glucosa , Lipogénesis , Hígado/efectos de los fármacos , MAP Quinasa Quinasa 4 , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Br J Pharmacol ; 172(17): 4303-18, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26040411

RESUMEN

BACKGROUND AND PURPOSE: Matrine is a small molecule drug used in humans for the treatment of chronic viral infections and tumours in the liver with little adverse effects. The present study investigated its therapeutic efficacy for insulin resistance and hepatic steatosis in high-fat-fed mice. EXPERIMENTAL APPROACH: C57BL/J6 mice were fed a chow or high-fat diet for 10 weeks and then treated with matrine or metformin for 4 weeks. The effects on lipid metabolism and glucose tolerance were evaluated. KEY RESULTS: Our results first showed that matrine reduced glucose intolerance and plasma insulin level, hepatic triglyceride content and adiposity in high-fat-fed mice without affecting caloric intake. This reduction in hepatosteatosis was attributed to suppressed lipid synthesis and increased fatty acid oxidation. In contrast to metformin, matrine neither suppressed mitochondrial respiration nor activated AMPK in the liver. A computational docking simulation revealed HSP90, a negative regulator of HSP72, as a potential binding target of matrine. Consistent with the simulation results, matrine, but not metformin, increased the hepatic protein level of HSP72 and this effect was inversely correlated with both liver triglyceride level and glucose intolerance. CONCLUSIONS AND IMPLICATIONS: Taken together, these results indicate that matrine may be used for the treatment of type 2 diabetes and hepatic steatosis, and the molecular action of this hepatoprotective drug involves the activation of HSP72 in the liver.


Asunto(s)
Alcaloides/administración & dosificación , Sistemas de Liberación de Medicamentos/tendencias , Hígado Graso/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Proteínas del Choque Térmico HSP72/agonistas , Quinolizinas/administración & dosificación , Alcaloides/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Intolerancia a la Glucosa/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Quinolizinas/metabolismo , Matrinas
6.
Diabetes ; 62(6): 2095-105, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23349482

RESUMEN

Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de novo lipogenesis (DNL) and directly interfering with insulin signaling through the activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) pathway. The current study interrogated these two proposed mechanisms in a mouse model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of fenofibrate (FB) 100 mg/kg/day, a peroxisome proliferator-activated receptor α (PPARα) agonist known to reduce lipid accumulation while maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced glucose intolerance, hepatic steatosis, and the impaired hepatic insulin signaling (pAkt and pGSK3ß). Of note, both the IRE1/XBP1 and PERK/eIF2α arms of unfolded protein response (UPR) signaling were activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, FAS, and SCD1 and [3H]H2O incorporation into lipids), FB treatment markedly increased fatty acid oxidation (indicated by induction of ACOX1, p-ACC, ß-HAD activity, and [14C]palmitate oxidation) and eliminated the accumulation of diacylglycerols (DAGs), which is known to have an impact on insulin signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation of JNK or IKK, is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing the accumulation of deleterious lipids, activation of PPARα can ameliorate hepatic insulin resistance against increased ER stress.


Asunto(s)
Hígado Graso/metabolismo , Fructosa/farmacología , Resistencia a la Insulina/fisiología , Hígado/metabolismo , PPAR alfa/metabolismo , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/metabolismo , Hígado Graso/tratamiento farmacológico , Fenofibrato/uso terapéutico , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
PLoS One ; 7(2): e30816, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22355328

RESUMEN

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been implicated in hepatic steatosis and insulin resistance. The present study investigated their roles in the development of hepatic steatosis and insulin resistance during de novo lipogenesis (DNL) compared to extrahepatic lipid oversupply. Male C57BL/6J mice were fed either a high fructose (HFru) or high fat (HFat) diet to induce DNL or lipid oversupply in/to the liver. Both HFru and HFat feeding increased hepatic triglyceride within 3 days (by 3.5 and 2.4 fold) and the steatosis remained persistent from 1 week onwards (p<0.01 vs Con). Glucose intolerance (iAUC increased by ∼60%) and blunted insulin-stimulated hepatic Akt and GSK3ß phosphorylation (∼40-60%) were found in both feeding conditions (p<0.01 vs Con, assessed after 1 week). No impairment of mitochondrial function was found (oxidation capacity, expression of PGC1α, CPT1, respiratory complexes, enzymatic activity of citrate synthase & ß-HAD). As expected, DNL was increased (∼60%) in HFru-fed mice and decreased (32%) in HFat-fed mice (all p<0.05). Interestingly, associated with the upregulated lipogenic enzymes (ACC, FAS and SCD1), two (PERK/eIF2α and IRE1/XBP1) of three ER stress pathways were significantly activated in HFru-fed mice. However, no significant ER stress was observed in HFat-fed mice during the development of hepatic steatosis. Our findings indicate that HFru and HFat diets can result in hepatic steatosis and insulin resistance without obvious mitochondrial defects via different lipid metabolic pathways. The fact that ER stress is apparent only with HFru feeding suggests that ER stress is involved in DNL per se rather than resulting from hepatic steatosis or insulin resistance.


Asunto(s)
Estrés del Retículo Endoplásmico , Hígado Graso/fisiopatología , Resistencia a la Insulina , Metabolismo de los Lípidos/fisiología , Lipogénesis , Hígado/patología , Adipogénesis , Animales , Western Blotting , Grasas de la Dieta/administración & dosificación , Hígado Graso/etiología , Fructosa/administración & dosificación , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/fisiopatología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda