Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(23): e2309844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279610

RESUMEN

Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Humanos , Animales , Materiales Biocompatibles/química , Válvulas Cardíacas
2.
Ann Emerg Med ; 84(2): 211-212, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032984
3.
Materials (Basel) ; 17(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611973

RESUMEN

Porous asphalt pavements are widely used in rainy and wet areas for their skid resistance, noise reduction, runoff minimization and environmental sustainability. Long-term moisture vapor erosion and the destabilization of large pore structures can easily result in pavement problems such as fragmentation, spalling, cracking, and excessive permanent deformation. To this end, four different preventive maintenance materials, including the rejuvenation (RJ), cohesion reinforcement (CEM), polymerization reaction, and emulsified asphalt (EA) types, were selected in this paper to improve the high-viscosity porous asphalt pavement. The effects of the different preventive maintenance materials on the temperature sensitivity, rheological properties and fatigue performance of high-viscosity modified asphalt were evaluated through temperature sweep, frequency sweep, multi-stress creep recovery (MSCR), linear amplitude sweep (LAS), and bending beam rheometer (BBR) tests. The results showed that the four preventive maintenance materials exhibit different enhancement mechanisms and effects. RJ improves the fatigue properties, deformation resistance and low-temperature cracking resistance of aged asphalt by adding elastomeric components; CEM materials are more conducive to increasing the low-temperature crack resistance of aged asphalt; while GL1 and EA improve the viscoelastic behavior of aged asphalt, but the effect of the dosing ratio needs to be considered.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda