Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2312853121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349881

RESUMEN

Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762655

RESUMEN

Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb , Temperatura
3.
Plant J ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133829

RESUMEN

Polycomb group (PcG) proteins are essential gene repressors in higher eukaryotes. However, how PcG proteins mediate transcriptional regulation of specific genes remains unknown. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), as a component of Polycomb Repression Complexes (PRC), epigenetically mediates several plant developmental processes together with PcG proteins. We observed physical interaction between MYB73 and LHP1 in vitro and in vivo. Genetic analysis indicated that myb73 mutants showed slightly late flowering, and the lhp1-3 myb73-2 double mutant exhibited delayed flowering and downregulated FT expression compared to lhp1-3. Chromatin immunoprecipitation and yeast one-hybrid assays revealed that MYB73 preferentially binds to the FT promoter. Additionally, our protoplast transient assays demonstrated that MYB73 activates to the FT promoter. Interestingly, the LHP1-MYB73 interaction is necessary to repress the FT promoter, suggesting that the LHP1-MYB73 interaction prevents FT activation by MYB73 in Arabidopsis. Our results show an example in which a chromatin regulator affects transcriptional regulation by negatively regulating a transcription factor through direct interaction.

4.
J Exp Bot ; 75(14): 4332-4345, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38436409

RESUMEN

Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.


Asunto(s)
Cromatina , Desarrollo de la Planta , Cromatina/metabolismo , Desarrollo de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Plantas/genética , Transducción de Señal , Redes Reguladoras de Genes , Ambiente
5.
Annu Rev Cell Dev Biol ; 25: 277-99, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575660

RESUMEN

Plants have evolved many systems to sense their environment and to modify their growth and development accordingly. One example is vernalization, the process by which flowering is promoted as plants sense exposure to the cold temperatures of winter. A requirement for vernalization is an adaptive trait that helps prevent flowering before winter and permits flowering in the favorable conditions of spring. In Arabidopsis and cereals, vernalization results in the suppression of genes that repress flowering. We describe recent progress in understanding the molecular basis of this suppression. In Arabidopsis, vernalization involves the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are silenced epigenetically via histone modifications. We also discuss the similarities and differences in vernalization between Arabidopsis and cereals.


Asunto(s)
Arabidopsis/fisiología , Grano Comestible/fisiología , Flores/fisiología , Fenómenos Fisiológicos de las Plantas , Estaciones del Año
6.
New Phytol ; 235(3): 1057-1069, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403701

RESUMEN

Polycomb dictates developmental programs in higher eukaryotes, including flowering plants. A phytohormone, abscisic acid (ABA), plays a pivotal role in seed and seedling development and mediates responses to multiple environmental stresses, such as salinity and drought. In this study, we show that ABA affects the Polycomb Repressive Complex 2 (PRC2)-mediated Histone H3 Lys 27 trimethylation (H3K27me3) through VIN3-LIKE1/VERNALIZATION 5 (VIL1/VRN5) to fine-tune the timely repression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABSCISIC ACID INSENSITIVE 4 (ABI4) in Arabidopsis thaliana. vil1 mutants exhibit hypersensitivity to ABA during early seed germination and show enhanced drought tolerance. Our study revealed that the ABA signaling pathway utilizes a facultative component of the chromatin remodeling complex to demarcate the level of expression of ABA-responsive genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Histonas/metabolismo , Plantones , Semillas/genética , Factores de Transcripción/metabolismo
7.
Plant J ; 103(4): 1490-1502, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412129

RESUMEN

Vernalization accelerates flowering after prolonged winter cold. Transcriptional and epigenetic changes are known to be involved in the regulation of the vernalization response. Despite intensive applications of next-generation sequencing in diverse aspects of plant research, genome-wide transcriptome and epigenome profiling during the vernalization response has not been conducted. In this work, to our knowledge, we present the first comprehensive analyses of transcriptomic and epigenomic dynamics during the vernalization process in Arabidopsis thaliana. Six major clusters of genes exhibiting distinctive features were identified. Temporary changes in histone H3K4me3 levels were observed that likely coordinate photosynthesis and prevent oxidative damage during cold exposure. In addition, vernalization induced a stable accumulation of H3K27me3 over genes encoding many development-related transcription factors, which resulted in either inhibition of transcription or a bivalent status of the genes. Lastly, FLC-like and VIN3-like genes were identified that appear to be novel components of the vernalization pathway.


Asunto(s)
Arabidopsis/genética , Epigenoma/fisiología , Transcriptoma/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Frío , Epigenoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Germinación/genética , Germinación/fisiología , Código de Histonas , Histonas/metabolismo , Histonas/fisiología , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/fisiología , Transcriptoma/genética
8.
Plant J ; 103(3): 1205-1214, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32365248

RESUMEN

LIKE HETEROCHROMATIN PROTEIN1 (LHP1) encodes the only plant homologue of the metazoan HETEROCHROMATIN PROTEIN1 (HP1) protein family. The LHP1 protein is necessary for proper epigenetic regulation of a range of developmental processes in plants. LHP1 is a transcriptional repressor of flowering-related genes, such as FLOWERING LOCUS T (FT), FLOWERING LOCUS C (FLC), AGAMOUS (AG) and APETALA 3 (AP3). We found that LHP1 interacts with importin α-1 (IMPα-1), importin α-2 (IMPα-2) and importin α-3 (IMPα-3) both in vitro and in vivo. A genetic approach revealed that triple mutation of impα-1, impα-2 and impα-3 resulted in Arabidopsis plants with a rapid flowering phenotype similar to that of plants with mutations in lhp1 due to the upregulation of FT expression. Nuclear targeting of LHP1 was severely impaired in the impα triple mutant, resulting in the de-repression of LHP1 target genes AG, AP3 and SHATTERPROOF 1 as well as FT. Therefore, the importin proteins IMPα-1, -2 and -3 are necessary for the nuclear import of LHP1.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Carioferinas/metabolismo , Factores de Transcripción/metabolismo , alfa Carioferinas/metabolismo , Arabidopsis/metabolismo , Fotoperiodo
9.
New Phytol ; 230(6): 2311-2326, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33686674

RESUMEN

Elongated hypocotyl5 (HY5) is a key transcription factor that promotes photomorphogenesis. Constitutive photomorphogenic1 (COP1)-Suppressor of phytochrome A-105 (SPA) E3 ubiquitin ligase complex promotes ubiquitination and degradation of HY5 to repress photomorphogenesis in darkness. HY5 is also regulated by phosphorylation at serine 36 residue. However, the kinase responsible for phosphorylation of HY5 remains unknown. Here, using extensive in vitro and in vivo biochemical, genetic, and photobiological techniques, we have identified a new kinase that phosphorylates HY5 and demonstrated the significance of phosphorylation of HY5 in Arabidopsis thaliana. We show that SPA proteins are the missing kinases necessary for HY5 phosphorylation. SPAs can directly phosphorylate HY5 in vitro, and the phosphorylated HY5 is absent in the spaQ background in vivo. We also demonstrate that the unphosphorylated HY5 interacts strongly with both COP1 and SPA1 and is the preferred substrate for degradation, whereas the phosphorylated HY5 is more stable in the dark. In addition, the unphosphorylated HY5 actively binds to the target promoters and is the physiologically more active form. Consistently, the transgenic plants expressing the unphosphorylated form of HY5 display enhanced photomorphogenesis. Collectively, our study revealed the missing kinase responsible for direct phosphorylation of HY5 that fine-tunes its stability and activity to regulate photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Fitocromo A , Ubiquitina-Proteína Ligasas/metabolismo
10.
New Phytol ; 231(1): 182-192, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774831

RESUMEN

Evolutionarily conserved DEK domain-containing proteins have been implicated in multiple chromatin-related processes, mRNA splicing and transcriptional regulation in eukaryotes. Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition in Arabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors, FLOWERING LOCUS C (FLC), and its two homologs, MADS AFFECTING FLOWERING4 (MAF4) and MAF5, to promote their expression. The binding of DEK3 and DEK4 to a histone octamer in vivo affects histone modifications at FLC, MAF4 and MAF5 loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II with FLC, MAF4 and MAF5 chromatin to promote their expression. Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
11.
PLoS Genet ; 13(7): e1006939, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28759577

RESUMEN

The long noncoding RNA COLDAIR is necessary for the repression of a floral repressor FLOWERING LOCUS C (FLC) during vernalization in Arabidopsis thaliana. The repression of FLC is mediated by increased enrichment of Polycomb Repressive Complex 2 (PRC2) and subsequent trimethylation of Histone H3 Lysine 27 (H3K27me3) at FLC chromatin. In this study we found that the association of COLDAIR with chromatin occurs only at the FLC locus and that the central region of the COLDAIR transcript is critical for this interaction. A modular motif in COLDAIR is responsible for the association with PRC2 in vitro, and the mutations within the motif that reduced the association of COLDAIR with PRC2 resulted in vernalization insensitivity. The vernalization insensitivity caused by mutant COLDAIR was rescued by the ectopic expression of the wild-type COLDAIR. Our study reveals the molecular framework in which COLDAIR lncRNA mediates the PRC2-mediated repression of FLC during vernalization.


Asunto(s)
Proteínas de Arabidopsis/genética , Epigénesis Genética , Proteínas de Dominio MADS/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cromatina/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación , Motivos de Nucleótidos/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Complejo Represivo Polycomb 2 , Proteínas de Unión al ARN/genética
12.
Development ; 143(4): 682-90, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26758694

RESUMEN

Flowering in plants is a dynamic and synchronized process where various cues including age, day length, temperature and endogenous hormones fine-tune the timing of flowering for reproductive success. Arabidopsis thaliana is a facultative long day (LD) plant where LD photoperiod promotes flowering. Arabidopsis still flowers under short-day (SD) conditions, albeit much later than in LD conditions. Although factors regulating the inductive LD pathway have been extensively investigated, the non-inductive SD pathway is much less understood. Here, we identified a key basic helix-loop-helix transcription factor called NFL (NO FLOWERING IN SHORT DAY) that is essential to induce flowering specifically under SD conditions in Arabidopsis. nfl mutants do not flower under SD conditions, but flower similar to the wild type under LD conditions. The no-flowering phenotype in SD is rescued either by exogenous application of gibberellin (GA) or by introducing della quadruple mutants in the nfl background, suggesting that NFL acts upstream of GA to promote flowering. NFL is expressed at the meristematic regions and NFL is localized to the nucleus. Quantitative RT-PCR assays using apical tissues showed that GA biosynthetic genes are downregulated and the GA catabolic and receptor genes are upregulated in the nfl mutant compared with the wild type, consistent with the perturbation of the endogenous GA biosynthetic and catabolic intermediates in the mutant. Taken together, these data suggest that NFL is a key transcription factor necessary for promotion of flowering under non-inductive SD conditions through the GA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/fisiología , Fotoperiodo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Frío , Epistasis Genética/efectos de los fármacos , Flores/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Giberelinas/biosíntesis , Giberelinas/metabolismo , Giberelinas/farmacología , Meristema/efectos de los fármacos , Meristema/metabolismo , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
13.
PLoS Genet ; 12(11): e1006437, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27870849

RESUMEN

Ethylene is one of the most important hormones for plant developmental processes and stress responses. However, the phosphorylation regulation in the ethylene signaling pathway is largely unknown. Here we report the phosphorylation of cap binding protein 20 (CBP20) at Ser245 is regulated by ethylene, and the phosphorylation is involved in root growth. The constitutive phosphorylation mimic form of CBP20 (CBP20S245E or CBP20S245D), while not the constitutive de-phosphorylation form of CBP20 (CBP20S245A) is able to rescue the root ethylene responsive phenotype of cbp20. By genome wide study with ethylene regulated gene expression and microRNA (miRNA) expression in the roots and shoots of both Col-0 and cbp20, we found miR319b is up regulated in roots while not in shoots, and its target MYB33 is specifically down regulated in roots with ethylene treatment. We described both the phenotypic and molecular consequences of transgenic over-expression of miR319b. Increased levels of miR319b (miR319bOE) leads to enhanced ethylene responsive root phenotype and reduction of MYB33 transcription level in roots; over expression of MYB33, which carrying mutated miR319b target site (mMYB33) in miR319bOE is able to recover both the root phenotype and the expression level of MYB33. Taken together, we proposed that ethylene regulated phosphorylation of CBP20 is involved in the root growth and one pathway is through the regulation of miR319b and its target MYB33 in roots.


Asunto(s)
Proteínas de Arabidopsis/genética , MicroARNs/genética , Raíces de Plantas/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , MicroARNs/biosíntesis , Fosforilación , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/biosíntesis
14.
BMC Genomics ; 19(1): 546, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029596

RESUMEN

BACKGROUND: Although different quality controls have been applied at different stages of the sample preparation and data analysis to ensure both reproducibility and reliability of RNA-seq results, there are still limitations and bias on the detectability for certain differentially expressed genes (DEGs). Whether the transcriptional dynamics of a gene can be captured accurately depends on experimental design/operation and the following data analysis processes. The workflow of subsequent data processing, such as reads alignment, transcript quantification, normalization, and statistical methods for ultimate identification of DEGs can influence the accuracy and sensitivity of DEGs analysis, producing a certain number of false-positivity or false-negativity. Machine learning (ML) is a multidisciplinary field that employs computer science, artificial intelligence, computational statistics and information theory to construct algorithms that can learn from existing data sets and to make predictions on new data set. ML-based differential network analysis has been applied to predict stress-responsive genes through learning the patterns of 32 expression characteristics of known stress-related genes. In addition, the epigenetic regulation plays critical roles in gene expression, therefore, DNA and histone methylation data has been shown to be powerful for ML-based model for prediction of gene expression in many systems, including lung cancer cells. Therefore, it is promising that ML-based methods could help to identify the DEGs that are not identified by traditional RNA-seq method. RESULTS: We identified the top 23 most informative features through assessing the performance of three different feature selection algorithms combined with five different classification methods on training and testing data sets. By comprehensive comparison, we found that the model based on InfoGain feature selection and Logistic Regression classification is powerful for DEGs prediction. Moreover, the power and performance of ML-based prediction was validated by the prediction on ethylene regulated gene expression and the following qRT-PCR. CONCLUSIONS: Our study shows that the combination of ML-based method with RNA-seq greatly improves the sensitivity of DEGs identification.


Asunto(s)
Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , Análisis de Secuencia de ARN/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Código de Histonas , Humanos , Transcripción Genética
15.
Plant Physiol ; 173(2): 1258-1268, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27999085

RESUMEN

Vernalization is a response to winter cold to initiate flowering in spring. VERNALIZATION INSENSITIVE3 (VIN3) is induced by winter cold and is essential to vernalization response in Arabidopsis (Arabidopsis thaliana). VIN3 encodes a PHD-finger domain that binds to modified histones in vitro. An alteration in the binding specificity of the PHD-finger domain of VIN3 results in a hypervernalization response. The hypervernalization response is achieved by increased enrichments of VIN3 and trimethylation of Histone H3 Lys 27 at the FLC locus without invoking the increased enrichment of Polycomb Repressive Complex 2. Our result shows that the binding specificity of the PHD-finger domain of VIN3 plays a role in mediating a proper vernalization response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Lisina/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Dominios Proteicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
16.
Development ; 140(1): 156-66, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23154417

RESUMEN

Mitotic inheritance of identical cellular memory is crucial for development in multicellular organisms. The cell type-specific epigenetic state should be correctly duplicated upon DNA replication to maintain cellular memory during tissue and organ development. Although a role of DNA replication machinery in maintenance of epigenetic memory has been proposed, technical limitations have prevented characterization of the process in detail. Here, we show that INCURVATA2 (ICU2), the catalytic subunit of DNA polymerase α in Arabidopsis, ensures the stable maintenance of repressive histone modifications. The missense mutant allele icu2-1 caused a defect in the mitotic maintenance of vernalization memory. Although neither the recruitment of CURLY LEAF (CLF), a SET-domain component of Polycomb Repressive Complex 2 (PRC2), nor the resultant deposition of the histone mark H3K27me3 required for vernalization-induced FLOWERING LOCUS C (FLC) repression were affected, icu2-1 mutants exhibited unstable maintenance of the H3K27me3 level at the FLC region, which resulted in mosaic FLC de-repression after vernalization. ICU2 maintains the repressive chromatin state at additional PRC2 targets as well as at heterochromatic retroelements. In icu2-1 mutants, the subsequent binding of LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1), a functional homolog of PRC1, at PRC2 targets was also reduced. We demonstrated that ICU2 facilitates histone assembly in dividing cells, suggesting a possible mechanism for ICU2-mediated epigenetic maintenance.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Dominio Catalítico/fisiología , ADN Polimerasa I/fisiología , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , ADN Polimerasa I/genética , Estabilidad de Enzimas/genética , Epigénesis Genética/genética , Histonas/genética , Mitosis/genética , Mutación Missense , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología
17.
Plant Cell ; 25(2): 454-69, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23417034

RESUMEN

Vernalization is an environmentally induced epigenetic switch in which winter cold triggers epigenetic silencing of floral repressors and thus provides competence to flower in spring. Vernalization triggers the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are epigenetically silenced via chromatin modifications. In Arabidopsis thaliana, VERNALIZATION INSENSITIVE3 (VIN3) and its related plant homeodomain finger proteins act together with Polycomb Repressive Complex 2 to increase repressive histone marks at floral repressor loci, including FLOWERING LOCUS C (FLC) and its related genes, by vernalization. Here, we show that VIN3 family of proteins nonredundantly functions to repress different subsets of the FLC gene family during the course of vernalization. Each VIN3 family protein binds to modified histone peptides in vitro and directly associates with specific sets of FLC gene family chromatins in vivo to mediate epigenetic silencing. In addition, members of the FLC gene family are also differentially regulated during the course of vernalization to mediate proper vernalization response. Our results show that these two gene families cooperated during the course of evolution to ensure proper vernalization response through epigenetic changes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Proteínas de Dominio MADS/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
18.
Nat Genet ; 38(6): 706-10, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16682972

RESUMEN

Vernalization is the process by which sensing a prolonged exposure to winter cold leads to competence to flower in the spring. In winter annual Arabidopsis thaliana accessions, flowering is suppressed in the fall by expression of the potent floral repressor FLOWERING LOCUS C (FLC). Vernalization promotes flowering via epigenetic repression of FLC. Repression is accompanied by a series of histone modifications of FLC chromatin that include dimethylation of histone H3 at Lys9 (H3K9) and Lys27 (H3K27). Here, we report that A. thaliana LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is necessary to maintain the epigenetically repressed state of FLC upon return to warm conditions typical of spring. LHP1 is enriched at FLC chromatin after prolonged exposure to cold, and LHP1 activity is needed to maintain the increased levels of H3K9 dimethylation at FLC chromatin that are characteristic of the vernalized state.


Asunto(s)
Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/fisiología , Epigénesis Genética , Arabidopsis/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Mutación
19.
BMC Plant Biol ; 14: 204, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25084677

RESUMEN

BACKGROUND: The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. RESULTS: In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to ß-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. CONCLUSIONS: Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members.


Asunto(s)
Endospermo/genética , Genes Duplicados , Familia de Multigenes , Zea mays/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Selección Genética , Transcriptoma
20.
Chromosome Res ; 21(6-7): 685-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24233054

RESUMEN

Many eukaryotes, including plants, produce a large number of long noncoding RNAs (lncRNAs).Growing number of lncRNAs are being reported to have regulatory roles in various developmental processes.Emerging mechanisms underlying the function of lncRNAs indicate that lncRNAs are versatile regulatory molecules. They function as potent cis- and trans-regulators of gene expression, including the formation of modular scaffolds that recruit chromatin-modifying complexes to target chromatin. LncRNAs have also been reported in plants. Here, we describe our current understanding on potential roles of lncRNA in plants.


Asunto(s)
Cromatina/genética , Epigénesis Genética , ARN Largo no Codificante/genética , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Plantas/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda