Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724785

RESUMEN

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TOR
2.
Brain ; 147(5): 1751-1767, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128568

RESUMEN

BLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T>C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A>C (p.Thr66Pro) and c.124T>C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.


Asunto(s)
Lisosomas , Enfermedades Neurodegenerativas , Humanos , Lisosomas/metabolismo , Lisosomas/genética , Femenino , Masculino , Enfermedades Neurodegenerativas/genética , Animales , Lactante , Preescolar , Niño , Pez Cebra , Linaje , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Alelos , Mutación Missense/genética
3.
Genet Med ; 26(3): 101034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054405

RESUMEN

PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Bicarbonatos/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Discapacidad Intelectual/genética , Proteínas de Transporte de Membrana , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Sodio/metabolismo , Bicarbonato de Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/genética
4.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
5.
Am J Med Genet A ; 194(4): e63480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37982325

RESUMEN

Czech dysplasia is an autosomal dominant type 2 collagenopathy that is caused by heterozygosity for the recurrent p.(Arg275Cys) COL2A1 variant. Affected individuals usually present with skeletal abnormalities such as metatarsal hypoplasia of the third and fourth toes and early-onset arthropathy, as well as hearing loss. To date, no ophthalmic findings have been reported in patients with Czech dysplasia even though COL2A1 has been implicated in other ocular conditions such as type 1 Stickler syndrome. For the first time, we report the ocular findings in four families with Czech dysplasia, including type 1 vitreous anomaly, hypoplastic vitreous, retinal tears, and significant refractive error. These novel ocular findings expand the phenotype associated with Czech dysplasia and may aid clinicians as an additional diagnostic feature. Patients with congenital abnormalities of vitreous gel architecture have an increased risk of retinal detachment, and as such, patients may benefit from prophylaxis. Considering that many of the patients did not report any ocular symptoms, vitreous phenotyping is of key importance in identifying the need for counseling with regard to prophylaxis.


Asunto(s)
Artritis , Enfermedades del Tejido Conjuntivo , Pérdida Auditiva Sensorineural , Osteocondrodisplasias , Desprendimiento de Retina , Dedos del Pie/anomalías , Humanos , Enfermedades del Tejido Conjuntivo/genética , Pérdida Auditiva Sensorineural/genética , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/genética , Artritis/genética , Mutación , Colágeno Tipo II/genética , Linaje
6.
Am J Med Genet A ; : e63779, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853608

RESUMEN

Pathogenic variants in FLNA cause a diversity of X-linked developmental disorders associated with either preserved or diminished levels of filamin A protein and are conceptualized dichotomously as relating to underlying gain- or loss-of-function pathogenic mechanisms. Hemizygosity for germline deletions or truncating variants in FLNA is generally considered to result in embryonic lethality. Structurally, filamin A is composed of an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. Hinge-1 is proposed to confer flexibility to the otherwise rigid protein and is a target for cleavage by calpain with the resultant filamin fragments mediating crucial cellular signaling processes. Here, three families with pathogenic variants in FLNA that impair the function of hinge-1 in males are described, leading to distinct clinical phenotypes. One large in-frame deletion that includes the hinge leads to frontometaphyseal dysplasia in affected males and females, while two germline truncating variants located within the exon encoding hinge 1 result in phenotypes in males that are explained by exon skipping and under-expression of a transcript that deletes hinge-1 from the resultant protein. These three variants affecting hinge-1 indicate that this domain does not mediate cellular functions that, when deficientresult in embryonic lethality in males and that germline truncating variants in this region of FLNA can result in viable phenotypes in males.

7.
J Med Genet ; 60(8): 791-796, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36581449

RESUMEN

BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidades del Desarrollo/genética
8.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32442410

RESUMEN

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Craneosinostosis/genética , Trastornos del Neurodesarrollo/genética , Osteocondroma/genética , Factores de Transcripción SOXD/genética , Transporte Activo de Núcleo Celular , Adolescente , Secuencia de Aminoácidos , Secuencia de Bases , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Niño , Preescolar , Simulación por Computador , Femenino , Variación Estructural del Genoma/genética , Humanos , Lactante , Masculino , Mutación Missense , Trastornos del Neurodesarrollo/diagnóstico , RNA-Seq , Factores de Transcripción SOXD/química , Factores de Transcripción SOXD/metabolismo , Síndrome , Transcripción Genética , Transcriptoma , Translocación Genética/genética
9.
Genet Med ; 25(1): 76-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331550

RESUMEN

PURPOSE: Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS: We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS: Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION: We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.


Asunto(s)
Epilepsia , Paraplejía Espástica Hereditaria , Humanos , Espectrina/genética , Mutación , Epilepsia/genética , Fenotipo , Ataxia , Paraplejía Espástica Hereditaria/genética , Convulsiones , Paraplejía , Linaje
10.
Genet Med ; 25(1): 135-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399134

RESUMEN

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Asunto(s)
Braquidactilia , Enanismo , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Enanismo/genética , Obesidad/genética , Fenotipo , Proteína-Arginina N-Metiltransferasas/genética
11.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35232796

RESUMEN

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Micrognatismo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome , Fenotipo , ADN , Factores de Transcripción SOXC/genética
12.
Health Expect ; 26(3): 1358-1367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36929011

RESUMEN

BACKGROUND/OBJECTIVES: Ataxia-telangiectasia (A-T) is a complex inherited disease associated with an increased risk of malignancy. Surveillance guidelines have demonstrated significant health benefits in other cancer predisposition syndromes. However, evidence-based guidelines for cancer screening are not currently used in the United Kingdom for people affected by A-T. This study aims to understand how people with A-T and their parents feel about cancer surveillance using whole-body magnetic resonance imaging (MRI) to inform the future development of cancer surveillance guidelines. DESIGN/METHODS: We conducted semistructured interviews with people affected by A-T. Data were analysed inductively using thematic analysis. RESULTS: Nine parents of children with A-T and four adults with A-T were interviewed. Five main themes emerged from the data, including (1) cancer screening was considered invaluable with the perceived value of early detection highlighted; (2) the cancer fear can increase anxiety; (3) the perceived limitations around current practice, with the responsibility for monitoring falling too strongly on parents and patients; (4) the need for effective preparation for cancer screening, including clear communication and (5) the challenges associated with MRI screening, where specific recommendations were made for improving the child's experience. CONCLUSION: This study suggests that stakeholders are positive about the perceived advantages of a cancer screening programme. Ongoing support and preparation techniques should be adopted to maximise adherence and minimise adverse psychosocial outcomes. PATIENT OR PUBLIC CONTRIBUTION: People with A-T and parents of people with A-T were actively involved in this study by giving their consent to be interviewed. An independent parent representative contributed to the study, supporting the research team in interpreting and commenting on the appropriateness of the language used in this report.


Asunto(s)
Ataxia Telangiectasia , Neoplasias , Niño , Adulto , Humanos , Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Padres/psicología , Neoplasias/diagnóstico por imagen
13.
Am J Hum Genet ; 105(5): 1016-1022, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630791

RESUMEN

MEDNIK syndrome (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma) is an autosomal-recessive disorder caused by bi-allelic mutations in AP1S1, encoding the small σ subunit of the AP-1 complex. Central to the pathogenesis of MEDNIK syndrome is abnormal AP-1-mediated trafficking of copper transporters; this abnormal trafficking results in a hybrid phenotype combining the copper-deficiency-related characteristics of Menkes disease and the copper-toxicity-related characteristics of Wilson disease. We describe three individuals from two unrelated families in whom a MEDNIK-like phenotype segregates with two homozygous null variants in AP1B1, encoding the large ß subunit of the AP-1 complex. Similar to individuals with MEDNIK syndrome, the affected individuals we report display abnormal copper metabolism, evidenced by low plasma copper and ceruloplasmin, but lack evidence of copper toxicity in the liver. Functional characterization of fibroblasts derived from affected individuals closely resembles the abnormal ATP7A trafficking described in MEDNIK syndrome both at baseline and in response to copper treatment. Taken together, our results expand the list of inborn errors of copper metabolism.


Asunto(s)
Complejo 1 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Enfermedades Genéticas Congénitas/genética , Mutación/genética , Subunidades de Proteína/genética , Proteínas de Transporte de Catión/genética , Preescolar , ATPasas Transportadoras de Cobre/genética , Femenino , Degeneración Hepatolenticular/genética , Homocigoto , Humanos , Lactante , Masculino , Fenotipo , Transporte de Proteínas/genética , Síndrome
14.
Lancet Oncol ; 22(11): 1618-1631, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34678156

RESUMEN

BACKGROUND: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS: The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS: Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION: After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING: Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Detección Precoz del Cáncer , Neoplasias de la Próstata/diagnóstico , Adulto , Anciano , Biomarcadores de Tumor/sangre , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Heterocigoto , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Proteína 2 Homóloga a MutS/genética , Estudios Prospectivos , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/genética
15.
Genet Med ; 23(2): 408-414, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33033404

RESUMEN

PURPOSE: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. METHODS: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. RESULTS: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. CONCLUSION: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.


Asunto(s)
Laminopatías , Microcefalia , Humanos , Lamina Tipo B/genética , Microcefalia/genética
16.
Genet Med ; 23(7): 1202-1210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674768

RESUMEN

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Asunto(s)
Histona Demetilasas/genética , Discapacidad Intelectual , Caracteres Sexuales , Anomalías Múltiples , Proteínas de Unión al ADN/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Enfermedades Hematológicas , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Proteínas de Neoplasias/genética , Fenotipo , Enfermedades Vestibulares
17.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777935

RESUMEN

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Asunto(s)
Proteínas 14-3-3/genética , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Espasmos Infantiles/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Transportador 2 de Aminoácidos Excitadores , Exoma/genética , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Fenotipo , Adulto Joven
18.
Clin Genet ; 98(2): 172-178, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32415735

RESUMEN

UBE2A deficiency, that is, intellectual disability (ID) Nascimento type (MIM 300860), is an X-linked syndrome characterized by developmental delay, moderate to severe ID, seizures, dysmorphisms, skin anomalies, and urogenital malformations. Forty affected subjects have been reported thus far, with 31 cases having intragenic UBE2A variants. Here, we report on additional eight affected subjects from seven unrelated families who were found to be hemizygous for previously unreported UBE2A missense variants (p.Glu62Lys, p.Arg95Cys, p.Thr99Ala, and p.Arg135Trp) or small in-frame deletions (p.Val81_Ala83del, and p.Asp101del). A wide phenotypic spectrum was documented in these subjects, ranging from moderate ID associated with mild dysmorphisms to severe features including congenital heart defects (CHD), severe cognitive impairment, and pineal gland tumors. Four variants affected residues (Glu62, Arg95, Thr99 and Asp101) that contribute to stabilizing the structure of the E3 binding domain. The three-residue in-frame deletion, p.Val81_Ala83del, resulted from aberrant processing of the transcript. This variant and p.Arg135Trp mapped to regions of the protein located far from the E3 binding region, and caused variably accelerated protein degradation. By reviewing available clinical information, we revise the clinical and molecular profile of the disorder and document genotype-phenotype correlations. Pineal gland cysts/tumors, CHD and hypogammaglobulinemia emerge as recurrent features.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Enzimas Ubiquitina-Conjugadoras/genética , Preescolar , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Linaje , Anomalías Cutáneas/complicaciones , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Anomalías Urogenitales/complicaciones , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología
19.
Ann Neurol ; 85(2): 170-180, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30549301

RESUMEN

OBJECTIVE: Variant ataxia-telangiectasia is caused by mutations that allow some retained ataxia telangiectasia-mutated (ATM) kinase activity. Here, we describe the clinical features of the largest established cohort of individuals with variant ataxia-telangiectasia and explore genotype-phenotype correlations. METHODS: Cross-sectional data were collected retrospectively. Patients were classified as variant ataxia-telangiectasia based on retained ATM kinase activity. RESULTS: The study includes 57 individuals. Mean age at assessment was 37.5 years. Most had their first symptoms by age 10 (81%). There was a diagnostic delay of more than 10 years in 68% and more than 20 years in one third of probands. Disease severity was mild in one third of patients, and 43% were still ambulant 20 years after disease onset. Only one third had predominant ataxia, and 18% had a pure extrapyramidal presentation. Individuals with extrapyramidal presentations had milder neurological disease severity. There were no significant respiratory or immunological complications, but 25% of individuals had a history of malignancy. Missense mutations were associated with milder neurological disease severity, but with a higher risk of malignancy, compared to leaky splice site mutations. INTERPRETATION: Individuals with variant ataxia-telangiectasia require malignancy surveillance and tailored management. However, our data suggest the condition may sometimes be mis- or underdiagnosed because of atypical features, including exclusive extrapyramidal symptoms, normal eye movements, and normal alpha-fetoprotein levels in some individuals. Missense mutations are associated with milder neurological presentations, but a particularly high malignancy risk, and it is important for clinicians to be aware of these phenotypes. ANN NEUROL 2019;85:170-180.


Asunto(s)
Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Enfermedades de los Ganglios Basales/diagnóstico , Enfermedades de los Ganglios Basales/genética , Genotipo , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Niño , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense/genética , Estudios Retrospectivos , Adulto Joven
20.
J Med Genet ; 55(12): 803-813, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30287594

RESUMEN

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.


Asunto(s)
Edema Encefálico/diagnóstico , Edema Encefálico/etiología , Epilepsia/diagnóstico , Epilepsia/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/etiología , Atrofia Óptica/diagnóstico , Atrofia Óptica/etiología , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/etiología , Factores de Edad , Alelos , Biomarcadores , Preescolar , Electroencefalografía , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genotipo , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda