Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
PLoS Pathog ; 19(6): e1011386, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37347729

RESUMEN

Sea lice, the major ectoparasites of fish, have significant economic impacts on wild and farmed finfish, and have been implicated in the decline of wild salmon populations. As blood-feeding arthropods, sea lice may also be reservoirs for viruses infecting fish. However, except for two groups of negative-strand RNA viruses within the order Mononegavirales, nothing is known about viruses of sea lice. Here, we used transcriptomic data from three key species of sea lice (Lepeophtheirus salmonis, Caligus clemensi, and Caligus rogercresseyi) to identify 32 previously unknown RNA viruses. The viruses encompassed all the existing phyla of RNA viruses, with many placed in deeply branching lineages that likely represent new families and genera. Importantly, the presence of canonical virus-derived small interfering RNAs (viRNAs) indicates that most of these viruses infect sea lice, even though in some cases their closest classified relatives are only known to infect plants or fungi. We also identified both viRNAs and PIWI-interacting RNAs (piRNAs) from sequences of a bunya-like and two qin-like viruses in C. rogercresseyi. Our analyses showed that most of the viruses found in C. rogercresseyi occurred in multiple life stages, spanning from planktonic to parasitic stages. Phylogenetic analysis revealed that many of the viruses infecting sea lice were closely related to those that infect a wide array of eukaryotes with which arthropods associate, including fungi and parasitic tapeworms, implying that over evolutionary time there has been cross-phylum and cross-kingdom switching of viruses between arthropods and other eukaryotes. Overall, this study greatly expands our view of virus diversity in crustaceans, identifies viruses that infect and replicate in sea lice, and provides evidence that over evolutionary time, viruses have switched between arthropods and eukaryotic hosts in other phyla and kingdoms.


Asunto(s)
Copépodos , Enfermedades de los Peces , Virus ARN , Animales , Copépodos/genética , Filogenia , Virus ARN/genética , Salmón/genética , Salmón/parasitología , ARN Interferente Pequeño
2.
Appl Environ Microbiol ; 90(4): e0005224, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38466091

RESUMEN

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cambio Climático , Océanos y Mares
3.
Arch Virol ; 168(11): 283, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904060

RESUMEN

Large DNA viruses in the phylum Nucleocytoviricota, sometimes referred to as "giant viruses" owing to their large genomes and virions, have been the subject of burgeoning interest over the last decade. Here, we describe recently adopted taxonomic updates for giant viruses within the order Imitervirales. The families Allomimiviridae, Mesomimiviridae, and Schizomimiviridae have been created to accommodate the increasing diversity of mimivirus relatives that have sometimes been referred to in the literature as "extended Mimiviridae". In addition, the subfamilies Aliimimivirinae, Megamimivirinae, and Klosneuvirinae have been established to refer to subgroups of the Mimiviridae. Binomial names have also been adopted for all recognized species in the order. For example, Acanthamoeba polyphaga mimivirus is now classified in the species Mimivirus bradfordmassiliense.


Asunto(s)
Virus Gigantes , Mimiviridae , Humanos , Virus Gigantes/genética , Virus ADN/genética , Mimiviridae/genética , Genoma Viral , Virión
4.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356002

RESUMEN

The family Marnaviridae comprises small non-enveloped viruses with positive-sense RNA genomes of 8.6-9.6 kb. Isolates infect marine single-celled eukaryotes (protists) that come from diverse lineages. Some members are known from metagenomic studies of ocean virioplankton, with additional unclassified viruses described from metagenomic datasets derived from marine and freshwater environments. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Marnaviridae, which is available at ictv.global/report/marnaviridae.


Asunto(s)
Genoma Viral , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Animales , Proteínas de la Cápside , Eucariontes , Especificidad del Huésped , Hidrobiología , Metagenómica , Infecciones por Virus ARN/virología , Virus ARN/ultraestructura , ARN Viral , Virión/clasificación , Virión/genética , Virión/ultraestructura , Replicación Viral
5.
PLoS Pathog ; 15(5): e1007801, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31150530

RESUMEN

Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes.


Asunto(s)
Bacterias/clasificación , Bacterias/patogenicidad , Chrysophyta/microbiología , Genoma Bacteriano , Interacciones Microbiota-Huesped , Zooplancton/microbiología , Animales , Bacterias/genética , Filogenia
6.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741635

RESUMEN

Marine microbes, including viruses, are an essential part of the marine ecosystem, forming the base of the food web and driving biogeochemical cycles. Within this system, the composition of viral assemblages changes markedly with time, and some of these changes are repeatable through time; however, the extent to which these dynamics are reflected within versus among evolutionarily related groups of viruses is largely unexplored. To examine these dynamics, changes in the composition of two groups of ecologically important viruses and communities of their potential hosts were sampled every 2 weeks for 13 months at a coastal site in British Columbia, Canada. We sequenced two marker genes for viruses-the gene encoding the major capsid protein of T4-like phages and their relatives (gp23) and the RNA-dependent RNA polymerase (RdRp) gene of marnavirus-like RNA viruses-as well as marker genes for their bacterial and eukaryotic host communities, the genes encoding 16S rRNA and 18S rRNA. There were strong lagged correlations between viral diversity and community similarity of putative hosts, implying that the viruses influenced the composition of the host communities. The results showed that for both viral assemblages, the dominant clusters of phylogenetically related viruses shifted over time, and this was correlated with environmental changes. Viral clusters contained many ephemeral taxa and few persistent taxa, but within a viral assemblage, the ephemeral and persistent taxa were closely related, implying ecological dynamics within these clusters. Furthermore, these dynamics occurred in both the RNA and DNA viral assemblages surveyed, implying that this structure is common in natural viral assemblages.IMPORTANCE Viruses are major agents of microbial mortality in marine systems, yet little is known about changes in the composition of viral assemblages in relation to those of the microbial communities that they infect. Here, we sampled coastal seawater every 2 weeks for 1 year and used high-throughput sequencing of marker genes to follow changes in the composition of two groups of ecologically important viruses, as well as the communities of bacteria and protists that serve as their respective hosts. Different subsets of genetically related viruses dominated at different times. These results demonstrate that although the genetic composition of viral assemblages is highly dynamic temporally, for the most part the shuffling of genotypes occurs within a few clusters of phylogenetically related viruses. Thus, it appears that even in temperate coastal waters with large seasonal changes, the highly dynamic shuffling of viral genotypes occurs largely within a few subsets of related individuals.


Asunto(s)
Filogenia , Agua de Mar/virología , Viroma , Virus/clasificación , Colombia Británica , ARN Ribosómico 16S/análisis , ARN Ribosómico 18S/análisis , ARN Viral/análisis , Virus/aislamiento & purificación
7.
Appl Environ Microbiol ; 87(22): e0116021, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34469192

RESUMEN

Nordic Seas are the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean with complex water masses, experiencing an abrupt climate change. Though knowledge of the marine virosphere has expanded rapidly, the diversity of viruses and their relationships with host cells and water masses in the Nordic Seas remain to be fully revealed. Here, we establish the Nordic Sea DNA virome (NSV) data set of 55,315 viral contigs including 1,478 unique viral populations from seven stations influenced by both the warm Atlantic and cold Arctic water masses. Caudovirales dominated in the seven NSVs, especially in the warm Atlantic waters. The major giant nucleocytoplasmic large DNA viruses (NCLDVs) contributed a significant proportion of the classified viral contigs in the NSVs (32.2%), especially in the cold Arctic waters (44.9%). The distribution patterns of Caudovirales and NCLDVs were a reflection of the community structure of their hosts in the corresponding water masses and currents. Latitude, pH, and flow speed were found to be key factors influencing the microbial communities and coinfluencing the variation of viral communities. Network analysis illustrated the tight coupling between the variation of viral communities and microbial communities in the Nordic Seas. This study suggests a probable linkage between viromes, host cells, and surface water masses from both the cool Arctic and warm Atlantic Oceans. IMPORTANCE This is a systematic study of Nordic Sea viromes using metagenomic analysis. The viral diversity, community structure, and their relationships with host cells and the complex water masses from both the cool Arctic and the warm Atlantic oceans were illustrated. The NCLDVs and Caudovirales are proposed as the viral characteristics of the cold Arctic and warm Atlantic waters, respectively. This study provides an important background for the viromes in the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean and sheds light on their responses to abrupt climate change in the future.


Asunto(s)
Metagenómica , Agua de Mar , Viroma , Regiones Árticas , Océano Atlántico , Agua de Mar/virología , Temperatura
8.
Nature ; 523(7559): 204-7, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26131935

RESUMEN

Multicellularity is often considered a prerequisite for morphological complexity, as seen in the camera-type eyes found in several groups of animals. A notable exception exists in single-celled eukaryotes called dinoflagellates, some of which have an eye-like 'ocelloid' consisting of subcellular analogues to a cornea, lens, iris, and retina. These planktonic cells are uncultivated and rarely encountered in environmental samples, obscuring the function and evolutionary origin of the ocelloid. Here we show, using a combination of electron microscopy, tomography, isolated-organelle genomics, and single-cell genomics, that ocelloids are built from pre-existing organelles, including a cornea-like layer made of mitochondria and a retinal body made of anastomosing plastids. We find that the retinal body forms the central core of a network of peridinin-type plastids, which in dinoflagellates and their relatives originated through an ancient endosymbiosis with a red alga. As such, the ocelloid is a chimaeric structure, incorporating organelles with different endosymbiotic histories. The anatomical complexity of single-celled organisms may be limited by the components available for differentiation, but the ocelloid shows that pre-existing organelles can be assembled into a structure so complex that it was initially mistaken for a multicellular eye. Although mitochondria and plastids are acknowledged chiefly for their metabolic roles, they can also be building blocks for greater structural complexity.


Asunto(s)
Dinoflagelados/genética , Dinoflagelados/ultraestructura , Simbiosis , Dinoflagelados/fisiología , Genoma de Protozoos/genética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Plastidios/metabolismo , Plastidios/ultraestructura , Proteínas Protozoarias/genética , Rhodophyta/genética
9.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32015145

RESUMEN

Bdellovibrio and like organisms are abundant environmental parasitoids of prokaryotes that show diverse predation strategies. The vast majority of studied Bdellovibrio bacteria and like organisms deploy intraperiplasmic replication inside the prey cell, while few isolates with smaller genomes consume their prey from the outside in an epibiotic manner. The novel parasitoid "Candidatus Bdellovibrio qaytius" was isolated from a eutrophic freshwater pond in British Columbia, where it was a continual part of the microbial community. "Ca Bdellovibrio qaytius" was found to preferentially prey on the betaproteobacterium Paraburkholderia fungorum without entering the periplasm. Despite its epibiotic replication strategy, "Ca Bdellovibrio" encodes a large genomic complement more similar to that of complex periplasmic predators. Functional genomic annotation further revealed several biosynthesis pathways not previously found in epibiotic predators, indicating that "Ca Bdellovibrio" represents an intermediate phenotype and at the same time narrowing down the genomic complement specific to epibiotic predators. In phylogenetic analysis, "Ca Bdellovibrio qaytius" occupies a widely distributed, but poorly characterized, basal cluster within the genus Bdellovibrio This suggests that epibiotic predation might be a common predation type in nature and that epibiotic predation could be the ancestral predation type in the genus.IMPORTANCEBdellovibrio and like organisms are bacteria that prey on other bacteria and are widespread in the environment. Most of the known Bdellovibrio species enter the space between the inner and outer prey membrane, where they consume their prey cells. However, one Bdellovibrio species has been described that consumes its prey from the outside. Here, we describe "Ca Bdellovibrio qaytius," a novel member of the genus Bdellovibrio that also remains outside the prey cell throughout its replication cycle. Unexpectedly, the genome of "Ca Bdellovibrio" is much more similar to the genomes of intracellular predators than to the species with a similar life cycle. Since "Ca Bdellovibrio" is also a basal representative of this genus, we hypothesize that extracellular predation could be the ancestral predation strategy.


Asunto(s)
Bdellovibrio/genética , Bdellovibrio/clasificación , Bdellovibrio/aislamiento & purificación , Bdellovibrio/fisiología , Burkholderiaceae/fisiología , Genoma Bacteriano , Genómica , Filogenia , Estanques/microbiología
10.
Bioinformatics ; 35(19): 3867-3869, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824917

RESUMEN

MOTIVATION: When analyzing viral metagenomic sequences, it is often desired to filter the results of a BLAST analysis by the host species of the virus. VHost-Classifier automates this procedure using a natural language processing algorithm written in Python 3, which takes a list of taxonomic identifiers (taxids) returned from a BLAST query using viral sequences as input. The taxid output is binned by the evolutionary lineage of their host, based on string matching the words in their English names. If VHost-Classifier cannot identify a host, it attempts to bin the sequences by the environment from which the sample originated. VHost-Classifier predicts the evolutionary lineage of the host from the virus name and does not rely on referencing taxids against a database; therefore, it is not constrained by the size of a database and can host classify newly characterized viruses. RESULTS: Benchmarked on a test dataset of 1000 randomly selected viral taxids on the NCBI taxonomy database, VHost-Classifier assigned, with 100% accuracy, a host to the rank of Class for >93% of viruses, and to the rank of Family for >37% of viruses. AVAILABILITY AND IMPLEMENTATION: For more information about VHost-Classifier as well as implementation instructions, visit https://github.com/Kzra/VHost-Classifier. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Procesamiento de Lenguaje Natural , Virus , Algoritmos , Bases de Datos Genéticas , Metagenoma
11.
Environ Microbiol ; 20(8): 2898-2912, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29749714

RESUMEN

Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.


Asunto(s)
Chlorophyta/virología , Regulación de la Expresión Génica de las Plantas , Fosfatos/química , Phycodnaviridae/fisiología , Transcripción Genética/fisiología , Organismos Acuáticos , Chlorophyta/metabolismo , Fosfatos/metabolismo , Phycodnaviridae/genética
12.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150500

RESUMEN

Interactions between photoautotrophic and heterotrophic microorganisms are central to the marine microbial ecosystem. Lab cultures of one of the dominant marine photoautotrophs, Synechococcus, have historically been difficult to render axenic, presumably because these bacteria depend upon other organisms to grow under these conditions. These tight associations between Synechococcus and heterotrophic bacteria represent a good relevant system to study interspecies interactions. Ten individual Synechococcus strains, isolated from eutrophic and oligotrophic waters, were chosen for investigation. Four to six dominant associated heterotrophic bacteria were detected in the liquid cultures of each Synechococcus isolate, comprising members of the Cytophaga-Flavobacteria-Bacteroides (CFB) group (mainly from Flavobacteriales and Cytophagales), Alphaproteobacteria (mainly from the Roseobacter clade), Gammaproteobacteria (mainly from the Alteromonadales and Pseudomonadales), and Actinobacteria The presence of the CFB group, Gammaproteobacteria, and Actinobacteria showed clear geographic patterns related to the isolation environments of the Synechococcus bacteria. An investigation of the population dynamics within a growing culture (XM-24) of one of the isolates, including an evaluation of the proportions of cells that were free-living versus aggregated/attached, revealed interesting patterns for different bacterial groups. In Synechococcus sp. strain XM-24 culture, flavobacteria, which was the most abundant group throughout the culture period, tended to be aggregated or attached to the Synechococcus cells, whereas the actinobacteria demonstrated a free-living lifestyle, and roseobacters displayed different patterns depending on the culture growth phase. Factors contributing to these succession patterns for the heterotrophs likely include interactions among the culture community members, their relative abilities to utilize different compounds produced by Synechococcus cells and changes in the compounds released as culture growth proceeds, and their responses to other changes in the environmental conditions throughout the culture period.IMPORTANCE Marine microbes exist within an interactive ecological network, and studying their interactions is an important part of understanding their roles in global biogeochemical cycling and the determinants of microbial diversity. In this study, the dynamic relationships between Synechococcus spp. and their associated heterotrophic bacteria were investigated. Synechococcus-associated heterotrophic bacteria had similar geographic distribution patterns as their "host" and displayed different lifestyles (free-living versus attached/aggregated) according to the Synechococcus culture growth phases. Combined organic carbon composition and bacterial lifestyle data indicated a potential for succession in carbon utilization patterns by the dominant associated heterotrophic bacteria. Comprehending the interactions between photoautotrophs and heterotrophs and the patterns of organic carbon excretion and utilization is critical to understanding their roles in oceanic biogeochemical cycling.


Asunto(s)
Bacterias/metabolismo , Procesos Heterotróficos , Interacciones Microbianas/fisiología , Agua de Mar/microbiología , Synechococcus/metabolismo , Alphaproteobacteria/metabolismo , Ecosistema , Flavobacteriaceae/metabolismo , Gammaproteobacteria/metabolismo , Océanos y Mares , Roseobacter/metabolismo , Synechococcus/crecimiento & desarrollo
13.
BMC Genomics ; 16: 528, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26183220

RESUMEN

BACKGROUND: Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants. RESULTS: We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae. CONCLUSION: From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.


Asunto(s)
Dinoflagelados/genética , ARN Lider Empalmado/genética , Transcriptoma , Carotenoides/metabolismo , ADN Ribosómico/química , Dinoflagelados/metabolismo , Fotosíntesis/genética , Filogenia , Plastidios/clasificación , Plastidios/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Simbiosis
14.
Environ Microbiol ; 17(10): 3440-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25708646

RESUMEN

Reef-building corals form close associations with organisms from all three domains of life and therefore have many potential viral hosts. Yet knowledge of viral communities associated with corals is barely explored. This complexity presents a number of challenges in terms of the metagenomic assessments of coral viral communities and requires specialized methods for purification and amplification of viral nucleic acids, as well as virome annotation. In this minireview, we conduct a meta-analysis of the limited number of existing coral virome studies, as well as available coral transcriptome and metagenome data, to identify trends and potential complications inherent in different methods. The analysis shows that the method used for viral nucleic acid isolation drastically affects the observed viral assemblage and interpretation of the results. Further, the small number of viral reference genomes available, coupled with short sequence read lengths might cause errors in virus identification. Despite these limitations and potential biases, the data show that viral communities associated with corals are diverse, with double- and single-stranded DNA and RNA viruses. The identified viruses are dominated by double-stranded DNA-tailed bacteriophages, but there are also viruses that infect eukaryote hosts, likely the endosymbiotic dinoflagellates, Symbiodinium spp., host coral and other eukaryotes in close association.


Asunto(s)
Antozoos/virología , Arrecifes de Coral , Virus ADN/genética , Genoma Viral/genética , Consorcios Microbianos/genética , Virus ARN/genética , Animales , ADN/genética , Virus ADN/aislamiento & purificación , ADN de Cadena Simple/genética , Dinoflagelados/virología , Células Eucariotas/virología , Metagenómica , Virus ARN/aislamiento & purificación , Simbiosis/genética , Transcriptoma
15.
G3 (Bethesda) ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869232

RESUMEN

Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 190). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0% and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.

16.
Proc Natl Acad Sci U S A ; 107(45): 19508-13, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974979

RESUMEN

As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.


Asunto(s)
Virus ADN , Genoma Viral , Zooplancton/virología , Acanthamoeba/genética , Animales , Cadena Alimentaria , Genes Virales , Biología Marina , Datos de Secuencia Molecular , Océanos y Mares , Filogenia
17.
Microorganisms ; 11(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110477

RESUMEN

Viruses infect all living organisms, but the viruses of most marine animals are largely unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few have been interrogated for their associated viruses despite the profound potential effects of viral infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous, including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses, in many cases representing deep branches of viral evolution. As there is clear evidence that many of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely responsible for a significant portion of unexplained non-consumptive mortality in this group. In turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct impacts of infection, zooplankton can vector economically devastating viruses of finfish and other crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton vertically between epi- and mesopelagic communities through seasonal and diel vertical migration (DVM) and across long distances in ship ballast water. The large potential impact of viruses on crustacean zooplankton emphasises the need to clearly establish the relationships between specific viruses and the zooplankton they infect and investigate disease and mortality for these host-virus pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics of host populations. We are only beginning to uncover the diversity and function of viruses associated with crustacean zooplankton.

18.
ISME J ; 17(1): 105-116, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209336

RESUMEN

Microbes are by far the dominant biomass in the world's oceans and drive biogeochemical cycles that are critical to life on Earth. The composition of marine microbial communities is highly dynamic, spatially and temporally, with consequent effects on their functional roles. In part, these changes in composition result from viral lysis, which is taxon-specific and estimated to account for about half of marine microbial mortality. Here, we show that extracellular ribosomal RNA (rRNAext) is produced by viral lysis, and that specific lysed populations can be identified by sequencing rRNAext recovered from seawater samples. In ten seawater samples collected at five depths between the surface and 265 m during and following a phytoplankton bloom, lysis was detected in about 15% of 16,946 prokaryotic taxa, identified from amplicon sequence variants (ASVs), with lysis occurring in up to 34% of taxa within a water sample. The ratio of rRNAext to cellular rRNA (rRNAcell) was used as an index of taxon-specific lysis, and revealed that higher relative lysis was most commonly associated with copiotrophic bacteria that were in relatively low abundance, such as those in the genera Escherichia and Shigella spp., as well as members of the Bacteriodetes; whereas, relatively low lysis was more common in taxa that are often relatively abundant, such as members of the Pelagibacterales (i.e., SAR11 clade), cyanobacteria in the genus Synechococcus, and members of the phylum Thaumarchaeota (synonym, Nitrososphaerota) that comprised about 13-15% of the 16 S rRNA gene sequences below 30 m. These results provide an explanation for the long-standing conundrum of why highly productive bacteria that are readily isolated from seawater are often in very low abundance. The ability to estimate taxon-specific cell lysis will help explore the distribution and abundance of microbial populations in nature.


Asunto(s)
Agua de Mar , Synechococcus , Agua de Mar/microbiología , Fitoplancton , Archaea/genética , Océanos y Mares , Synechococcus/genética , ARN Ribosómico 16S/genética
19.
Microbiol Resour Announc ; 12(2): e0107922, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36651740

RESUMEN

Deep6 is a deep learning model that classifies metatranscriptomic sequences as short as 250 nucleotides into prokaryotes, eukaryotes, or one of the four viral realms, using a reference-independent and alignment-free approach. Average accuracies range from 0.87 to 0.97, depending on sequence length.

20.
Microbiol Resour Announc ; 12(1): e0110822, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36598262

RESUMEN

Vibrio natriegens strain PWH3a, isolated from the Texas Gulf Coast, is used as a model organism in marine microbiology. Here, we report the complete genome sequence of strain PWH3a, which has two circular chromosomes, 4,650 coding sequences, 34 rRNA, 4 noncoding RNA (ncRNA), 131 tRNA genes, and one Mu-like prophage sequence.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda