Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mar Drugs ; 22(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38921591

RESUMEN

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Asunto(s)
Alginatos , Antioxidantes , Etanol , Laminaria , Algas Marinas , Alginatos/química , Laminaria/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Etanol/química , Algas Marinas/química , Biomasa , Flavonoides/química , Flavonoides/aislamiento & purificación , Algas Comestibles
2.
Arch Toxicol ; 96(11): 2829-2863, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997789

RESUMEN

Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.


Asunto(s)
Toxinas Bacterianas , Sistema Cardiovascular , Animales , Toxinas Bacterianas/toxicidad , Toxinas de Cianobacterias , Toxinas de Lyngbya , Mamíferos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Saxitoxina/toxicidad
3.
Environ Monit Assess ; 193(9): 554, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34357469

RESUMEN

Cyanobacteria are important members of lake plankton, but they have the ability to form blooms and produce cyanotoxins and thus cause a number of adverse effects. Freshwater ecosystems around the world have been investigated for the distribution of cyanobacteria and their toxins and the effects they have on the ecosystems. Similar research was performed on the Fehérvárcsurgó reservoir in Hungary during 2018. Cyanobacteria were present and blooming, and the highest abundance was recorded in July (2,822,000 cells/mL). The species present were Aphanizomenon flos-aquae, Microcystis flos-aquae, Microcystis wesenbergii, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, and Snowella litoralis. In July and September, the microcystin encoding gene mcyE and the saxitoxin encoding gene sxtG were amplified in the biomass samples. While a low concentration of microcystin-RR was found in one water sample from July, analyses of Abramis brama and Carassius gibelio caught from the reservoir did not show the presence of the investigated microcystins in the fish tissue. However, several histopathological changes, predominantly in gills and kidneys, were observed in the fish, and the damage was more severe during May and especially July, which coincides with the increase in cyanobacterial biomass during the summer months. Cyanobacteria may thus have adverse effects in this ecosystem.


Asunto(s)
Cianobacterias , Microcystis , Animales , Aphanizomenon , Ecosistema , Monitoreo del Ambiente , Hungría , Lagos , Microcistinas/análisis , Microcistinas/toxicidad
4.
J Water Health ; 18(3): 314-330, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32589618

RESUMEN

Cyanobacteria are ancient photosynthetic microorganisms that shaped today's atmosphere. Anthropocentric and irresponsible activities are changing the atmosphere which favor the frequent occurrence and mass development of cyanobacteria. Extensive cyanobacterial blooming causes numerous problems, including negative effects on human skin. Climate change, depletion of ozone layer, and the increased ultraviolet radiation also affect the skin and lead to more frequent occurrence of skin cancer. This research, for the first time, attempts to establish a connection between these two factors, or whether, in addition to ultraviolet radiation, cyanobacteria can influence the incidence of melanoma. With this objective in mind, an epidemiological investigation was conducted in Vojvodina, Serbia. It was observed that the incidence of melanoma was higher in municipalities where water bodies used for recreation, irrigation and fishing are blooming; however, results could be considered as inconclusive, because of the restrictions in the cancer database. Nevertheless, results gathered from the reviewed literature support the hypothesis that cyanobacteria could be a new potential risk factor for melanoma, while climate change could be a catalyst that converts these potential risk factors into cofactors, which act synergistically with the main risk factor - ultraviolet radiation - and induce an increase of melanoma incidence.


Asunto(s)
Cianobacterias , Piel/microbiología , Cambio Climático , Humanos , Incidencia , Ozono , Neoplasias Cutáneas , Rayos Ultravioleta
5.
Arch Toxicol ; 93(9): 2429-2481, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31350576

RESUMEN

Cyanobacteria are photoautotrophic organisms which occur in aquatic and terrestrial environments. They have the potential to produce toxins which pose a threat to human and animal health. This review covers the global distribution of the common cyanotoxins and related poisoning cases. A total of 468 selected articles on toxic cyanobacteria, dating from the earliest records until 2018, were reviewed. Most of the articles were published after 2000 (72%; 337 out of 468), which is consistent with the recent growth in interest in the analysis, toxinology and ecotoxicology of cyanotoxins. Animal and/or human poisoning cases were described in more than a third of the overall publications (38%; 177 out of 468). The reviewed publications showed that there were 1118 recorded identifications of major cyanotoxins in 869 freshwater ecosystems from 66 countries throughout the world. Microcystins were the most often recorded cyanotoxins worldwide (63%; 699 out of 1118), followed by cylindrospermopsin (10%; 107 out of 1118), anatoxins (9%; 100 out of 1118), and saxitoxins (8%; 93 out of 1118). Nodularins were the most rarely recorded cyanotoxins (2%; 19 out of 1118); however, there were also reports where cyanotoxins were not analysed or specified (9%; 100 out of 1118). The most commonly found toxic cyanobacterial genera were Microcystis spp. (669 reports), Anabaena spp. (397 reports), Aphanizomenon spp. (100 reports), Planktothrix spp. (98 reports), and Oscillatoria spp. (75 reports). Furthermore, there were 183 recorded cyanotoxin poisonings of humans and/or animals. Out of all toxic cyanobacterial blooms reviewed in this paper, the highest percentage of associated poisonings was found in North and Central America (39%; 69 cases out of 179), then Europe (20%; 35 out of 179), Australia including New Zealand (15%; 27 out of 179), and Africa (11%; 20 out of 179), while the lowest percentage was related to Asia (8%; 14 cases out of 179) and South America (8%; 14 cases out of 179). Events where only animals were known to have been affected were 63% (114 out of 182), whereas 32% (58 out of 182) of the investigated events involved only humans. A historical overview of human and animal poisoning episodes associated with cyanobacterial blooms is presented. Further, geographical data on the occurrence of cyanotoxins and related poisonings based on the available literature are shown. Some countries (mainly European) have done very intensive research on the occurrence of toxic cyanobacteria and cyanotoxins, and reported related ecotoxicological observations, while in some countries the lack of data is apparent. The true global extent of cyanotoxins and associated poisonings is likely to be greater than found in the available literature, and it can be assumed that ecotoxicological and hygienic problems caused by toxic cyanobacteria may occur in more environments.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Toxinas Marinas/aislamiento & purificación , Microcistinas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , África , Américas , Animales , Asia , Australasia , Cianobacterias/clasificación , Ecosistema , Europa (Continente) , Eutrofización , Agua Dulce/microbiología , Humanos , Toxinas Marinas/envenenamiento , Microcistinas/envenenamiento , Intoxicación/epidemiología , Contaminantes Químicos del Agua/envenenamiento
6.
Arch Toxicol ; 91(2): 621-650, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28042640

RESUMEN

Blooms of cyanobacteria have been documented throughout history, all over the world. Mass populations of these organisms typically present hazards to human health and are known for the production of a wide range of highly toxic metabolites-cyanotoxins, of which among the most common and most investigated are the microcystins. The toxicity of the family of microcystin congeners to animal and cell models has received much attention; however, less is known about their negative effects on human health, whether via acute or chronic exposure. Useful information may be acquired through epidemiological studies since they can contribute to knowledge of the relationships between cyanotoxins and human health in environmental settings. The aim of this review is to compile and evaluate the available published reports and epidemiological investigations of human health incidents associated with exposure to mass populations of cyanobacteria from throughout the world and to identify the occurrence and likely role of microcystins in these events. After an initial screening of 134 publications, 42 publications (25 on the chronic and 17 on the acute effects of cyanotoxins) describing 33 cases of poisonings by cyanobacterial toxins in 11 countries were reviewed. The countries were Australia, China, Sri Lanka, Namibia, Serbia, Sweden, UK, Portugal, Brazil, USA, and Canada. At least 36 publications link cyanobacteria/cyanotoxins including microcystins to adverse human health effects. The studies were published between 1960 and 2016. Although the scattered epidemiological evidence does not provide a definitive conclusion, it can serve as additional information for the medical assessment of the role of microcystins in cancer development and other human health problems. This paper discusses the major cases of cyanotoxin poisonings as well as the strengths, weaknesses, and importance of the performed epidemiological research. This study also proposes some recommendations for future epidemiological work.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cianobacterias , Exposición a Riesgos Ambientales/análisis , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Intoxicación/epidemiología , Administración Oral , Toxinas Bacterianas/envenenamiento , Toxinas de Cianobacterias , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Floraciones de Algas Nocivas , Humanos , Toxinas Marinas/envenenamiento , Microcistinas/administración & dosificación , Microcistinas/envenenamiento , Intoxicación/microbiología
7.
J Toxicol Environ Health A ; 80(3): 145-154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28140774

RESUMEN

Surface water, often used for irrigation purposes, may sometimes be contaminated with blooming cyanobacteria and thereby may contain their potent and harmful toxins. Cyanotoxins adversely affect many terrestrial plants, and accumulate in plant tissues that are subsequently ingested by humans. Studies were undertaken to (1) examine the bioaccumulation of microcystins (MCs) in leaves and fruits of pepper Capsicum annuum and (2) examine the potential effects of MCs on antioxidant capacity of these organs. Plants were irrigated with water containing MCs for a period of 3 mo. Data showed that MCs did not accumulate in leaves; however, in fruits the presence of the MC-LR (0.118 ng/mg dry weight) and dmMC-LR (0.077 ng/mg dry weight) was detected. The concentrations of MC-LR in fruit approached the acceptable guideline values and tolerable daily intake for this toxin. Lipid peroxidation levels and flavonoids content were significantly enhanced in both organs of treated plants, while total phenolic concentrations were not markedly variable between control and treated plants. Significant decrease in 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity was noted for both organs. The levels of superoxide anion in fruits and hydroxyl radical in leaves were markedly reduced. Data suggest that exposure to MCs significantly reduced antioxidant capacity of experimental plants, indicating that MCs affected antioxidant systems in C. annuum.


Asunto(s)
Antioxidantes/metabolismo , Capsicum/efectos de los fármacos , Microcistinas/metabolismo , Microcistinas/toxicidad , Riego Agrícola , Capsicum/metabolismo , Frutas/metabolismo , Frutas/toxicidad , Homeostasis , Hojas de la Planta/metabolismo , Hojas de la Planta/toxicidad
8.
Ecotoxicology ; 25(7): 1353-63, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27352231

RESUMEN

This paper presents a case study of a massive fish mortality during a Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake, Serbia in mid-December 2012. According to a preliminary investigation of the samples taken on November 6 before the fish mortalities and to extended analyses of samples taken on November 15, no values of significant physicochemical parameters emerged to explain the cause(s) of the fish mortality. No industrial pollutants were apparent at this location, and results excluded the likelihood of bacterial infections. Even after freezing, the dissolved oxygen concentration in the water was sufficient for fish survival. High concentrations of chlorophyll a and phaeophytin occurred in the lake, and phytoplankton bloom samples were lethal in Artemia salina bioassays. A bloom of the cyanobacterium C. raciborskii was recorded during November. Although the A. salina bioassays indicated the presence of toxic compounds in the cyanobacterial cells, the cyanotoxins, microcystins, cylindrospermopsin and saxitoxin were not detected.


Asunto(s)
Cylindrospermopsis/crecimiento & desarrollo , Monitoreo del Ambiente , Peces/fisiología , Floraciones de Algas Nocivas , Lagos/microbiología , Contaminantes Químicos del Agua/toxicidad , Alcaloides , Animales , Toxinas Bacterianas/toxicidad , Toxinas de Cianobacterias , Microcistinas , Uracilo/análogos & derivados , Uracilo/toxicidad , Microbiología del Agua
9.
Artículo en Inglés | MEDLINE | ID: mdl-26023756

RESUMEN

Cyanobacteria are present in all aquatic ecosystems throughout the world. They are able to produce toxic secondary metabolites, and microcystins are those most frequently found. Research has displayed a negative influence of microcystins and closely related nodularin on fish, and various histopathological alterations have been observed in many organs of the exposed fish. The aim of this article is to summarize the present knowledge of the impact of microcystins and nodularin on the histology of fish. The observed negative effects of cyanotoxins indicate that cyanobacteria and their toxins are a relevant medical (due to irritation, acute poisoning, tumor promotion, and carcinogenesis), ecotoxicological, and economic problem that may affect both fish and fish consumers including humans.


Asunto(s)
Carcinogénesis/patología , Cianobacterias/química , Enfermedades de los Peces/patología , Microcistinas/toxicidad , Péptidos Cíclicos/toxicidad , Animales , Carcinogénesis/inducido químicamente , Enfermedades de los Peces/inducido químicamente , Microcistinas/envenenamiento , Péptidos Cíclicos/envenenamiento
10.
Artículo en Inglés | MEDLINE | ID: mdl-25436472

RESUMEN

Cyanobacteria produce toxic metabolites known as cyanotoxins. These bioactive compounds can cause acute poisoning, and some of them may promote cancer through chronic exposure. Direct ingestion of and contact with contaminated water is one of the many exposure routes to cyanotoxins. The aim of this article was to review the incidence of 13 cancers during a 10-year period in Serbia and to assess whether there is a correlation between the cancer incidences and cyanobacterial bloom occurrence in reservoirs for drinking water supply. The types of cancers were chosen and subjected to epidemiological analyses utilizing previously published data. Based on the epidemiological and statistical analysis, the group of districts in which the incidences of cancers are significant, and may be considered as critical, include Nisavski, Toplicki, and Sumadijski district. A significantly higher incidence of ten cancers was observed in the three critical districts as compared to the remaining 14 districts in Central Serbia. These elevated incidences of cancer include: brain cancer, heart, mediastinum and pleura cancer, ovary cancer, testicular cancer, gastric cancer, colorectal cancer, retroperitoneum and peritoneum cancer, leukemia, malignant melanoma of skin, and primary liver cancer. In addition, the mean incidence of five chosen cancers was the highest in the three critical regions, then in the rest of Central Serbia, while the lowest values were recorded in Vojvodina. Persistent and recurrent cyanobacterial blooms occur during summer months in reservoirs supplying water to waterworks in the three critical districts. People in Central Serbia mainly use surface water as water supply (but not all the water bodies are blooming) while in Vojvodina region (control region in this study) only groundwater is used. Among the 14 "noncritical" districts, reservoirs used for drinking water supply have been affected by recurrent cyanobacterial blooms in two districts (Rasinski and Zajecarski), but the waterworks in these districts have been performing ozonation for more than 30 years. We propose that the established statistical differences of cancer incidences in Serbia could be related to drinking water quality, which is affected by cyanobacterial blooms in drinking water reservoirs in certain districts. However, more detailed research is needed regarding cyanobacterial secondary metabolites as risk factors in tumor promotion and cancerogenesis in general.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cianobacterias/crecimiento & desarrollo , Eutrofización , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Neoplasias/epidemiología , Contaminantes Químicos del Agua/toxicidad , Toxinas de Cianobacterias , Humanos , Incidencia , Neoplasias/inducido químicamente , Serbia/epidemiología , Microbiología del Agua
11.
Int J Biol Macromol ; 257(Pt 2): 128668, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092097

RESUMEN

This paper outlines a novel simple protocol for tuning the structure and properties of jute using sodium periodate (NaIO4) oxidation and coating with alginate. When compared to the raw jute, fabrics oxidized with a 0.2 or 0.4 % NaIO4 solution for 30-120 min exhibited an increased aldehyde group content (0.185 vs. 0.239-0.398 mmol/g), a significantly increased negative zeta potential (from -8.57 down to -20.12 mV), a slight disruption of fiber crystallinity, 15.1-37.5 % and 27.9-49.8 % lower fabric maximum force and stiffness, respectively. Owing to the removal of hydrophobic surface barrier, decreased crystallinity index and the presence of micropores on the fabrics' surfaces, oxidized fabrics have a 22.3-29.6 % improved ability for moisture sorption compared to raw fabric. Oxidized fabrics characterized by very long wetting times and excellent antioxidant activities (> 98 %), can find applications as hydrophobic packaging materials. To further extend the utilization of jute in biocarpet engineering such as water-binding geo-prebiotic supports, oxidized fabrics were coated with alginate resulting in 7.9-24.9 % higher moisture sorption and 352-660 times lower wetting times than their oxidized counterparts. This modification protocol has never been applied to lignocellulosic fibers and sheds new light on obtaining jute fabrics with tuned structure and properties intended for various applications.


Asunto(s)
Alginatos , Alginatos/química , Ácido Peryódico , Oxidación-Reducción , Interacciones Hidrofóbicas e Hidrofílicas
12.
Carbohydr Polym ; 342: 122374, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048223

RESUMEN

Jute fibers are characterized by a heterogeneous chemical composition (cellulose and non-cellulosic components) and a complex layered structure with a hydrophobic surface outer layer responsible for their low wettability. In this work, after the removal of water-soluble components, raw jute fibers were subjected to atmospheric pressure dielectric barrier discharge (DBD) under different conditions (at 150 or 300 Hz) to tailor jute fiber surface structure and wettability. The research was focused on the aging effect during natural aging in a standard atmosphere investigated up to three weeks after DBD treatment. Alterations in the surface morphology of DBD-treated jute fibers were investigated by FE-SEM and AFM, while ATR-FTIR, XPS, and electrokinetic measurements were used to assess the changes in the jute fiber surface chemistry. Sorption properties were monitored through wetting time and capillary rise measurements. The sorption properties of DBD-treated jute fibers were improved (about 100 times lower wetting time and 15 % higher capillary rise height in comparison to untreated) due to the changes in surface chemistry (decreased lignin and hemicellulose content in parallel with cellulose oxidation) and morphology (about 4.6 times higher average roughness). The electrokinetic and sorption properties measurement confirmed the significance of aging effects in lignocellulosic fibers' functionalization using plasma.

13.
Artículo en Inglés | MEDLINE | ID: mdl-24024518

RESUMEN

Today, the occurrence of harmful cyanobacterial blooms is a common phenomenon and a potential global health problem. Cyanobacteria can produce metabolites highly toxic to humans. More than 80% of reservoirs used for water supply in Central Serbia have bloomed over the past 80 years. A 10-year epidemiological study showed a significant increase in the incidence of primary liver cancer (PLC) in the regions where water from the blooming reservoirs was used for human consumption. At the same time, no correlation was found between the incidence of PLC and other risk factors, such as cirrhosis and hepatitis viruses. Given the strong association with PLC induction and various known possible mechanisms of carcinogenic action, it is highly possible that, cyanotoxins--acting as initiator and promoter--may be the major risk factor that acts synergistically with other risk factors to cause increased incidence of PLC. However, at present, it is still not certain whether cyanotoxins alone were sufficient to induce PLC. Therefore, additional assessment of the health risks that may arise from human exposure to cyanotoxins is advisable.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Agua Dulce/microbiología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/epidemiología , Microcistinas/toxicidad , Carcinógenos/toxicidad , Eutrofización , Humanos , Incidencia , Factores de Riesgo , Estaciones del Año , Serbia/epidemiología
14.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37376238

RESUMEN

Hydrogels are very attractive materials due to their multifunctional properties. Many natural polymers, such as polysaccharides, are used for the preparation of hydrogels. The most important and commonly used polysaccharide is alginate because of its biodegradability, biocompatibility, and non-toxicity. Since the properties of alginate hydrogel and its application depend on numerous factors, this study aimed to optimize the gel composition to enable the growth of inoculated cyanobacterial crusts for suppressing the desertification process. The influence of alginate concentration (0.1-2.9%, m/v) and CaCl2 concentration (0.4-4.6%, m/v) on the water-retaining capacity was analyzed using the response surface methodology. According to the design matrix, 13 formulations of different compositions were prepared. The water-retaining capacity was defined as the system response maximized in optimization studies. The optimal composition of hydrogel with a water-retaining capacity of about 76% was obtained using 2.7% (m/v) alginate solution and 0.9% (m/v) CaCl2 solution. Fourier transform infrared spectroscopy was used for the structural characterization of the prepared hydrogels, while the water content and swelling ratio of hydrogels were determined using gravimetric methods. It was concluded that alginate and CaCl2 concentrations play the most important role regarding the gelation time, homogeneity, water content, and swelling ratio of the hydrogel.

15.
Biology (Basel) ; 12(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37237524

RESUMEN

Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.

16.
Microorganisms ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36557671

RESUMEN

In the present review we have discussed the occurrence of ß-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.

17.
Toxins (Basel) ; 14(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35324712

RESUMEN

Cyanotoxins are a diverse group of bioactive compounds produced by cyanobacteria that have adverse effects on human and animal health. While the phenomenon of cyanotoxin production in aquatic environments is well studied, research on cyanotoxins in terrestrial environments, where cyanobacteria abundantly occur in biocrusts, is still in its infancy. Here, we investigated the potential cyanotoxin production in cyanobacteria-dominated biological loess crusts (BLCs) from three different regions (China, Iran, and Serbia) and in cyanobacterial cultures isolated from the BLCs. The presence of cyanotoxins microcystins, cylindrospermopsin, saxitoxins, and ß-N-methylamino-L-alanine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, while the presence of cyanotoxin-encoding genes (mcyE, cyrJ, sxtA, sxtG, sxtS, and anaC) was investigated by polymerase chain reaction (PCR) method. We could not detect any of the targeted cyanotoxins in the biocrusts or the cyanobacterial cultures, nor could we amplify any cyanotoxin-encoding genes in the cyanobacterial strains. The results are discussed in terms of the biological role of cyanotoxins, the application of cyanobacteria in land restoration programs, and the use of cyanotoxins as biosignatures of cyanobacterial populations in loess research. The article highlights the need to extend the field of research on cyanobacteria and cyanotoxin production to terrestrial environments.


Asunto(s)
Toxinas de Cianobacterias , Cianobacterias , Cromatografía Liquida , Cianobacterias/genética , Microcistinas , Saxitoxina , Espectrometría de Masas en Tándem
18.
Microorganisms ; 9(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946953

RESUMEN

Lake Balaton is the largest shallow lake in Central Europe. Its water quality is affected by its biggest inflow, the Zala River. During late 20th century, a wetland area named the Kis-Balaton Water Protection System (KBWPS) was constructed in the hopes that it would act as a filter zone and thus ameliorate the water quality of Lake Balaton. The aim of the present study was to test whether the KBWPS effectively safeguards Lake Balaton against toxic cyanobacterial blooms. During April, May, July and September 2018, severe cyanobacterial blooming was observed in the KBWPS with numbers reaching up to 13 million cells/mL at the peak of the bloom (July 2018). MC- and STX-coding genes were detected in the cyanobacterial biomass. Five out of nine tested microcystin congeners were detected at the peak of the bloom with the concentrations of MC-LR reaching 1.29 µg/L; however, accumulation of MCs was not detected in fish tissues. Histopathological analyses displayed severe hepatopancreas, kidney and gill alterations in fish obtained throughout the investigated period. In Lake Balaton, on the other hand, cyanobacterial numbers were much lower; more than 400-fold fewer cells/mL were detected during June 2018 and cyanotoxins were not detected in the water. Hepatic, kidney and gill tissue displayed few alterations and resembled the structure of control fish. We can conclude that the KBWPS acts as a significant buffering zone, thus protecting the water quality of Lake Balaton. However, as MC- and STX-coding genes in the cyanobacterial biomass were detected at both sites, regular monitoring of this valuable ecosystem for the presence of cyanobacteria and cyanotoxins is of paramount importance.

19.
Sci Total Environ ; 764: 142319, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33069479

RESUMEN

Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 µg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.


Asunto(s)
Microcystis , Alimentación Animal , Animales , Biomasa , Eutrofización , Humanos , Microcistinas/metabolismo , Microcystis/metabolismo , Estrés Oxidativo
20.
Environ Sci Pollut Res Int ; 27(8): 8638-8652, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907814

RESUMEN

Cyanobacterial blooms pose a risk to wild and domestic animals as well as humans due to the toxins they may produce. Humans may be subjected to cyanobacterial toxins through many routes, e.g., by consuming contaminated drinking water, fish, and crop plants or through recreational activities. In earlier studies, cyanobacterial cells have been shown to accumulate on leafy plants after spray irrigation with cyanobacteria-containing water, and microcystin (MC) has been detected in the plant root system after irrigation with MC-containing water. This paper reports a series of experiments where lysis of cyanobacteria in abstracted lake water was induced by the use of hydrogen peroxide and the fate of released MCs was followed. The hydrogen peroxide-treated water was then used for spray irrigation of cultivated spinach and possible toxin accumulation in the plants was monitored. The water abstracted from Lake Köyliönjärvi, SW Finland, contained fairly low concentrations of intracellular MC prior to the hydrogen peroxide treatment (0.04 µg L-1 in July to 2.4 µg L-1 in September 2014). Hydrogen peroxide at sufficient doses was able to lyse cyanobacteria efficiently but released MCs were still present even after the application of the highest hydrogen peroxide dose of 20 mg L-1. No traces of MC were detected in the spinach leaves. The viability of moving phytoplankton and zooplankton was also monitored after the application of hydrogen peroxide. Hydrogen peroxide at 10 mg L-1 or higher had a detrimental effect on the moving phytoplankton and zooplankton.


Asunto(s)
Riego Agrícola/métodos , Cianobacterias , Microcistinas , Eliminación de Residuos Líquidos/métodos , Microbiología del Agua , Animales , Finlandia , Humanos , Peróxido de Hidrógeno , Lagos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda