RESUMEN
Methods based on pulse electron paramagnetic resonance allow measurement of the electron-electron dipolar coupling between two spin labels. Here we compare the most popular technique, Double Electron-Electron Resonance (DEER or PELDOR), with the dead-time free 5-pulse Relaxation-Induced Dipolar Modulation Enhancement (RIDME) method for Gd(iii)-Gd(iii) distance measurements at W-band (94.9 GHz, ≈3.5 T) using Gd(iii) tags with a small zero field splitting (ZFS). Such tags are important because of their high EPR sensitivity arising from their narrow central transition. Two systems were investigated: (i) a rigid model compound with an inter-spin distance of 2.35 nm, and (ii) two mutants of a homodimeric protein, both labeled with a DOTA-based Gd(iii) chelate and characterized by an inter-spin distance of around 6 nm, one having a narrow distance distribution and the other a broad distribution. Measurements on the model compound show that RIDME is less sensitive to the complications arising from the failure of the weak coupling approximation which affect DEER measurements on systems characterized by short inter-spin distances between Gd(iii) tags having a narrow central transition. Measurements on the protein samples, which are characterized by a long inter-spin distance, emphasize the complications due to the appearance of harmonics of the dipolar interaction frequency in the RIDME traces for S > 1/2 spin systems, as well as enhanced uncertainties in the background subtraction. In both cases the sensitivity of RIDME was found to be significantly better than DEER. The effects of the experimental parameters on the RIDME trace are discussed.
RESUMEN
The solution structure of diadenosine 5',5'''-P1,P4-tetraphosphate hydrolase from Lupinus angustifolius L., an enzyme of the Nudix family, has been determined by heteronuclear NMR, using a torsion angle dynamics/simulated annealing protocol based on approximately 12 interresidue NOEs per residue. The structure represents the first Ap4A hydrolase to be determined, and sequence homology suggests that other members will have the same fold. The family of structures shows a well-defined fold comprised of a central four-stranded mixed beta-sheet, a two-stranded antiparallel beta-sheet and three helices (alphaI, alphaIII, alphaIV). The root-mean-squared deviation for the backbone (C',O,N,Calpha) of the rigid parts (residues 9 to 75, 97 to 115, 125 to 160) of the protein is 0.32 A. Several regions, however, show lower definition, particularly an isolated helix (alphaII) that connects two strands of the central sheet. This poor definition is mainly due to a lack of long-range NOEs between alphaII and other parts of the protein. Mapping conserved residues outside of the Nudix signature and those sensitive to an Ap4A analogue suggests that the adenosine-ribose moiety of the substrate binds into a large cleft above the four-stranded beta-sheet. Four conserved glutamate residues (Glu55, Glu58, Glu59 and Glu125) form a cluster that most likely ligates an essential magnesium ion, however, Gly41 also an expected magnesium ligand, is distant from this cluster.
Asunto(s)
Ácido Anhídrido Hidrolasas/química , Magnoliopsida/enzimología , Pirofosfatasas/química , Ácido Anhídrido Hidrolasas/antagonistas & inhibidores , Ácido Anhídrido Hidrolasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ligandos , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/metabolismo , Alineación de Secuencia , Soluciones , Electricidad Estática , Hidrolasas NudixRESUMEN
The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported. Each tag is based on the ((2S,2'S,2''S,2'''S)-1,1',1'',1'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(propan-2-ol)) scaffold, featuring small chiral alcohol coordinating pendants to minimise the size and hydrophobic character of each tag. The tags feature different linkers of variable length for conjugation to protein via a single cysteine residue. Each tag's ability to induce pseudocontact shifts (PCS) was assessed on a ubiquitin A28C mutant. Two enantiomeric tags of particular note, C7 and C8, produced significantly larger Δχ-tensors compared to a previously developed tag, C1, attributed to the extremely short linker utilised, limiting the mobility of the bound lanthanide ion. The C7 and C8 tags' capacity to induce PCSs was further demonstrated on GB1 Q32C and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) S112C/C80A mutants. Whilst factors such as the choice of lanthanide ion, pH and site of conjugation influence the size of the PCSs obtained, the tags represent a significant advance in the field.
RESUMEN
Site-directed mutagenesis has been used to characterize the functions of key amino acid residues in the catalytic site of the 'nudix' hydrolase, (asymmetrical) diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) hydrolase (EC 3.6.1.17) from Lupinus angustifolius, the three-dimensional solution structure of which has recently been solved. Residues within the nudix motif, Gly-(Xaa)5-Glu-(Xaa)7-Arg-Glu-Uaa-Xaa-(Glu)2-Xaa-Gly (where Xaa represents unspecified amino acids and Uaa represents the bulky aliphatic amino acids Ile, Leu or Val) conserved in 'nudix enzymes', and residues important for catalysis from elsewhere in the molecule, were mutated and the expressed proteins characterized. The results reveal a high degree of functional conservation between lupin asymmetric Ap4A hydrolase and the 8-oxo-dGTP hydrolase from Escherichia coli. Charged residues in positions equivalent to those that ligate an enzyme-bound metal ion in the E. coli 8-oxo-dGTP hydrolase [Harris, Wu, Massiah and Mildvan (2000) Biochemistry 39, 1655-1674] were shown to contribute to catalysis to similar extents in the lupin enzyme. Mutations E55Q, E59Q and E125Q all reduced kcat markedly, whereas mutations R54Q, E58Q and E122Q had smaller effects. None of the mutations produced a substantial change in the Km)for Ap4A, but several extensively modified the pH-dependence and fluoride-sensitivities of the hydrolase. It was concluded that the precisely positioned glutamate residues Glu-55, Glu-59 and Glu-125 are conserved as functionally significant components of the hydrolytic mechanism in both of these members of the nudix family of hydrolases.
Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Escherichia coli , Fabaceae/enzimología , Plantas Medicinales , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Dicroismo Circular , Secuencia de Consenso , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Monoéster Fosfórico Hidrolasas/química , Estructura Secundaria de Proteína , Pirofosfatasas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
The advantages of the organism Dictyostelium discoideum as an expression host for recombinant glycoproteins have been exploited for the production of an isotopically labeled cell surface protein for NMR structure studies. Growth medium containing [(15)N]NH(4)Cl and [(13)C]glycerol was used to generate isotopically labeled Escherichia coli, which was subsequently introduced to D. discoideum cells in simple Mes buffer. A variety of growth conditions were screened to establish minimal amounts of nitrogen and carbon metabolites for a cost-effective protocol. Following single-step purification by anion-exchange chromatography, 8 mg of uniformly (13)C,(15)N-labeled protein secreted by approximately 10(10) D. discoideum cells was isolated from 3.3 liters of supernatant. Mass spectrometry showed the recombinant protein of 16 kDa to have incorporated greater than 99.9% isotopic label. The two-dimensional (1)H-(13)C HSQC spectrum confirms (13)C labeling of both glycan and amino acid residues of the glycoprotein. All heteronuclear NMR spectra showed a good dispersion of cross-peaks essential for high-quality structure determination.