Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Cancer ; 140(1): 234-246, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27615392

RESUMEN

The identification and validation of a targeted therapy for patients with triple-negative breast cancer (TNBC) is currently one of the most urgent needs in breast cancer therapeutics. One of the key reasons for the failure to develop a new therapy for this subgroup of breast cancer patients has been the difficulty in identifying a highly prevalent, targetable molecular alteration in these tumors. Recently however, the p53 gene was found to be mutated in approximately 80% of basal/TNBC, raising the possibility that targeting the mutant p53 protein product might be a new approach for the treatment of this form of breast cancer. In this study, we investigated the anti-cancer activity of PRIMA-1 and PRIMA-1MET (APR-246), two compounds which were previously reported to reactivate mutant p53 and convert it to a form with wild-type (WT) properties. Using a panel of 18 breast cancer cell lines and 2 immortalized breast cell lines, inhibition of proliferation by PRIMA-1 and PRIMA-1MET was found to be cell-line dependent, but independent of cell line molecular subtype. Although response was independent of molecular subtype, p53 mutated cell lines were significantly more sensitive to PRIMA-1MET than p53 WT cells (p = 0.029). Furthermore, response (measured as IC50 value) correlated significantly with p53 protein level as measured by ELISA (p = 0.0089, r=-0.57, n = 19). In addition to inhibiting cell proliferation, PRIMA-1MET induced apoptosis and inhibited migration in a p53 mutant-dependent manner. Based on our data, we conclude that targeting mutant p53 with PRIMA-1MET is a potential new approach for treating p53-mutated breast cancer, including the subgroup with triple-negative (TN) disease.


Asunto(s)
Compuestos Aza/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Mutación , Quinuclidinas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Br J Cancer ; 112(12): 1895-903, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26010411

RESUMEN

BACKGROUND: Identification and validation of a targeted therapy for triple-negative breast cancer (TNBC), that is, breast cancers negative for oestrogen receptors, progesterone receptors and HER2 amplification, is currently one of the most urgent problems in breast cancer treatment. EGFR is one of the best-validated driver genes for TNBC. EGFR is normally activated following the release of ligands such as TGFα, mediated by the two MMP-like proteases ADAM (a disintegrin and metalloproteinase)-10 and ADAM-17. The aim of this study was to investigate the antitumour effects of a monoclonal antibody against ADAM-17 on an in vitro model of TNBC. METHODS: We investigated an inhibitory cross-domain humanised monoclonal antibody targeting both the catalytic domain and the cysteine-rich domain of ADAM17-D1(A12) in the HCC1937 and HCC1143 cell lines. RESULTS: D1(A12) was found to significantly inhibit the release of TGFα, and to decrease downstream EGFR-dependent cell signalling. D1(A12) treatment reduced proliferation in two-dimensional clonogenic assays, as well as growth in three-dimensional culture. Furthermore, D1(A12) reduced invasion of HCC1937 cells and decreased migration of HCC1143 cells. Finally, D1(A12) enhanced cell death in HCC1143 cells. CONCLUSION: Our in vitro findings suggest that targeting ADAM-17 with D1(A12) may have anticancer activity in TNBC cells.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas ADAM/inmunología , Proteína ADAM17 , Anticuerpos Monoclonales Humanizados/inmunología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Terapia Molecular Dirigida , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda