Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928019

RESUMEN

The mammalian immune system is a Janus-faced network of well-coordinated highly specialized cells and biomolecules [...].


Asunto(s)
Enfermedades Autoinmunes , Inmunofenotipificación , Neoplasias , Humanos , Enfermedades Autoinmunes/inmunología , Neoplasias/inmunología , Inmunofenotipificación/métodos , Animales
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612832

RESUMEN

A murine colorectal carcinoma (CRC) model was established. CT26 colon carcinoma cells were injected into BALB/c mice's spleen to study the primary tumor and the mechanisms of cell spread of colon cancer to the liver. The CRC was verified by the immunohistochemistry of Pan Cytokeratin and Vimentin expression. Immunophenotyping of leukocytes isolated from CRC-bearing BALB/c mice or healthy controls, such as CD19+ B cells, CD11+ myeloid cells, and CD3+ T cells, was carried out using fluorochrome-labeled lectins. The binding of six lectins to white blood cells, such as galectin-1 (Gal1), siglec-1 (Sig1), Sambucus nigra lectin (SNA), Aleuria aurantia lectin (AAL), Phytolacca americana lectin (PWM), and galectin-3 (Gal3), was assayed. Flow cytometric analysis of the splenocytes revealed the increased binding of SNA, and AAL to CD3 + T cells and CD11b myeloid cells; and increased siglec-1 and AAL binding to CD19 B cells of the tumor-bearing mice. The whole proteomic analysis of the established CRC-bearing liver and spleen versus healthy tissues identified differentially expressed proteins, characteristic of the primary or secondary CRC tissues. KEGG Gene Ontology bioinformatic analysis delineated the established murine CRC characteristic protein interaction networks, biological pathways, and cellular processes involved in CRC. Galectin-1 and S100A4 were identified as upregulated proteins in the primary and secondary CT26 tumor tissues, and these were previously reported to contribute to the poor prognosis of CRC patients. Modelling the development of liver colonization of CRC by the injection of CT26 cells into the spleen may facilitate the understanding of carcinogenesis in human CRC and contribute to the development of novel therapeutic strategies.


Asunto(s)
Carcinoma , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Animales , Ratones , Galectina 1 , Modelos Animales de Enfermedad , Inmunofenotipificación , Proteómica , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Tomografía Computarizada por Rayos X
3.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445759

RESUMEN

The present study aimed to characterize the antiproliferative and antimetastatic properties of two recently synthesized monoterpene-aminopyrimidine hybrids (1 and 2) on A2780 ovary cancer cells. Both agents exerted a more pronounced cell growth inhibitory action than the reference agent cisplatin, as determined by the MTT assay. Tumor selectivity was assessed using non-cancerous fibroblast cells. Hybrids 1 and 2 induced changes in cell morphology and membrane integrity in A2780 cells, as evidenced by Hoechst 33258-propidium iodide fluorescent staining. Cell cycle analysis by flow cytometry revealed substantial changes in the distribution of A2780 ovarian cancer cells, with an increased rate in the subG1 and G2/M phases, at the expense of the G1 cell population. Moreover, the tested molecules accelerated tubulin polymerization in a cell-free in vitro system. The antimetastatic properties of both tested compounds were investigated by wound healing and Boyden chamber assays after 24 and 48 h of incubation. Treatment with 1 and 2 resulted in time- and concentration-dependent inhibition of migration and invasion of A2780 cancer cells. These results support that the tested agents may be worth of further investigation as promising anticancer drug candidates.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Línea Celular Tumoral , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular
4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047597

RESUMEN

Cervical carcinoma is one of the most frequent malignant gynecological cancers in women of reproductive age. Because of the poor tolerability of currently available chemotherapeutic agents, efforts have been focused on developing innovative molecules, including steroids, that exert antineoplastic effects with a better safety profile. In addition to their endocrine properties, certain estrogens exhibit additional biological activities, such as antiangiogenic and anticancer effects. Based on previous studies, the antineoplastic properties of 13α-estrone sulfamate derivatives (13AES1-3) were investigated, and the mechanism of action for the most promising compound 13AES3 was explored. Based on their effects on the viability of different human adherent gynecological cancer cells, the SiHa cervical cell line was used for mechanistic experiments. The most active analog 13AES3 was shown to exert considerable proapoptotic effects, as evidenced by a colorimetric caspase-3 assay and fluorescent double staining. It also elicited antimigratory and anti-invasive effects in a concentration-dependent manner, as evidenced by wound healing and Boyden chamber assays, respectively. Regarding their mechanism of action, 13AES derivatives were shown to inhibit tubulin polymerization, and computer simulations provided a possible explanation for the importance of the presence of the chlorophenyl ring on the estrane skeleton. 13AES3 is considered to be the first 13α-estrone derivative with a significant antineoplastic potency against SiHa cancer cells. Therefore, it might serve as a valuable lead molecule for the design of anticancer agents targeting cervical carcinomas.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Humanos , Femenino , Estrona , Papillomavirus Humano 16 , Proliferación Celular , Apoptosis , Línea Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Línea Celular Tumoral
5.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762056

RESUMEN

Four diastereomers of 16-azidomethyl substituted 3-O-benzyl estradiol (1-4) and their two estrone analogs (16AABE and 16BABE) were tested for their antiproliferative properties against human gynecological cancer cell lines. The estrones were selected for additional experiments based on their outstanding cell growth-inhibiting activities. Both compounds increased hypodiploid populations of breast cancer cells, and 16AABE elicited cell cycle disturbance as evidenced by flow cytometry. The two analogs substantially increased the rate of tubulin polymerization in vitro. 16AABE and 16BABE inhibited breast cancer cells' migration and invasive ability, as evidenced by wound healing and Boyden chamber assays. Since both estrone analogs exerted remarkable estrogenic activities, as documented by a luciferase reporter gene assay, they can be considered as promising drug candidates for hormone-independent malignancies.


Asunto(s)
Neoplasias de la Mama , Estrona , Humanos , Femenino , Estrona/farmacología , Estradiol , Aneuploidia , Bioensayo , Neoplasias de la Mama/tratamiento farmacológico
6.
Drug Dev Res ; 83(8): 1906-1922, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36322473

RESUMEN

Here, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential. Viability of healthy human fibroblasts and peripheral blood mononuclear cells upon treatment was less hampered compared to cancer cell lines supporting tumor cell specific cytotoxicity of our compounds. The most cytotoxic compounds resulted the following IC50 values 28: 2.91 µM on HL-60 cells, and 29: 3.1 µM on 4T1 cells. The A549 cells were less sensitive to the treatments with IC50 15 µM for both 28 and 29. Flow cytometry demonstrated the apoptotic effect of the most active seven compounds inducing phosphatidylserine exposure and sub-G1 fragmentation of nuclear DNA. Cell cycle arrest was also observed. Four compounds caused depolarization of the mitochondrial membrane potential as an early event of apoptosis. Two lead compounds inhibited tumor growth in vivo in the 4T1 triple negative breast cancer and A549 human lung adenocarcinoma xenograft models. Novel marine sponge alkaloid analogues are demonstrated as potential anticancer agents for further development.


Asunto(s)
Antineoplásicos , Poríferos , Humanos , Ratones , Animales , Línea Celular Tumoral , Leucocitos Mononucleares , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular
7.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232710

RESUMEN

Vaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination. Patients receiving a heterologous booster had a higher proportion of IgM+ SARS-CoV-2 S+ CD19+CD27+ peripheral memory B-cells in comparison to those who acquired infection. Biologic therapy decreased the number of S+CD19+; S+CD19+CD27+IgG+; and S+CD19+CD27+IgM+ B-cells. The response rate to a booster event in cellular immunity was the highest in the S-, M-, and N-reactive CD4+CD40L+ T-cell subset. Patients with a disease duration of more than 10 years had higher proportions of CD8+TNF-α+ and CD8+IFN-γ+ T-cells in comparison to patients who were diagnosed less than 10 years ago. We detected neutralizing antibodies, S+ reactive peripheral memory B-cells, and five S-, M-, and N-reactive T-cells subsets in our patient cohort showing the importance of booster events. Biologic therapy and <10 years disease duration may confound anti-SARS-CoV-2 specific immunity in aiRMDs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ligando de CD40 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Inmunoglobulina M , Factor de Necrosis Tumoral alfa , Vacunación
8.
Mediators Inflamm ; 2021: 5523582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239365

RESUMEN

There is a current imperative to reveal more precisely the molecular pathways of early onset of systemic autoimmune diseases (SADs). The investigation of newly diagnosed drug-naive SAD patients might contribute to identify novel disease-specific and prognostic markers. The multiplex analysis of 30 plasma proteins in 60 newly diagnosed drug-naive SADs, such as RA (rheumatoid arthritis, n = 31), SLE (systemic lupus erythematosus, n = 19), and SSc (systemic scleroderma, n = 10) patients, versus healthy controls (HCs, n = 40) was addressed. Thirty plasma cytokines were quantified using the Procarta Plex™ panel. The higher expression of IL-12p40, IL-10, IL-13, IFN-γ, M-CSF, IL-4, NTproBNP, IL-17A, BMP-9, PYY (3-36), GITRL, MMP-12, and TNFRSF6 was associated with RA; IL-12p40, M-CSF, IL-4, GITRL, and NTproBNP were higher in SLE; or NTproBNP, PYY (3-36), and MMP-12 were increased in SSc over HCs, respectively. The cleaved peptide tyrosine tyrosine (PYY 3-36) was elevated in RA (361.6 ± 47.7 pg/ml) vs. HCs (163.96 ± 14.5 pg/ml, mean ± SEM, ∗∗∗ p = 4 × 10-5). The CI (95%) was 268.05-455.16 pg/ml for RA vs. 135.55-192.37 pg/ml for HCs. The elevated PYY (3-36) level correlated significantly with the increased IL-4 or GITRL concentration but not with the clinical scores (DAS28, CRP, ESR, RF, aMCV). We are the first to report cleaved PYY (3-36) as a specific plasma marker of therapy-naive RA. Additionally, the multiplex plasma protein analysis supported a disease-specific cytokine pattern in RA, SLE, and SSc, respectively.


Asunto(s)
Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/fisiopatología , Biomarcadores/sangre , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Esclerodermia Sistémica/sangre , Esclerodermia Sistémica/inmunología , Tirosina/química , Anciano , Citocinas/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas , Pronóstico
9.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919597

RESUMEN

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos
10.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698503

RESUMEN

Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Pirazoles/farmacología , Animales , Antineoplásicos/química , Diferenciación Celular/efectos de los fármacos , Femenino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/citología , Células Supresoras de Origen Mieloide/metabolismo , Pirazoles/química , Células Tumorales Cultivadas , Adulto Joven
11.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881770

RESUMEN

The treatment of metastatic breast cancer remained a challenge despite the recent breakthrough in the immunotherapy regimens. Here, we addressed the multidimensional immunophenotyping of 4T1 metastatic breast cancer by the state-of-the-art single cell mass cytometry (CyTOF). We determined the dose and time dependent cytotoxicity of cisplatin on 4T1 cells by the xCelligence real-time electronic sensing assay. Cisplatin treatment reduced tumor growth, number of lung metastasis, and the splenomegaly of 4T1 tumor bearing mice. We showed that cisplatin inhibited the tumor stroma formation, the polarization of carcinoma-associated fibroblasts by the diminished proteolytic activity of fibroblast activating protein. The CyTOF analysis revealed the emergence of CD11b+/Gr-1+/CD44+ or CD11b+/Gr-1+/IL-17A+ myeloid-derived suppressor cells (MDSCs) and the absence of B220+ or CD62L+ B-cells, the CD62L+/CD4+ and CD62L+/CD8+ T-cells in the spleen of advanced cancer. We could show the immunomodulatory effect of cisplatin via the suppression of splenic MDSCs and via the promotion of peripheral IFN-γ+ myeloid cells. Our data could support the use of low dose chemotherapy with cisplatin as an immunomodulatory agent for metastatic triple negative breast cancer.


Asunto(s)
Cisplatino/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Endopeptidasas , Femenino , Gelatinasas/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/citología , Serina Endopeptidasas/metabolismo , Trasplante Heterólogo
12.
Molecules ; 24(23)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771153

RESUMEN

Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer's disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.


Asunto(s)
Hidroxiquinolinas/síntesis química , Hidroxiquinolinas/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Oxiquinolina/análogos & derivados , Línea Celular Tumoral , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxiquinolinas/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Quinidina/química , Quinina/química , Estereoisomerismo
13.
Molecules ; 24(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010141

RESUMEN

The incidence of inflammatory bowel disease (IBD) increases gradually in Western countries with high need for novel therapeutic interventions. Mannich curcuminoids, C142 or C150 synthetized in our laboratory, have been tested for anti-inflammatory activity in a rat model of TNBS (2,4,6-trinitrobenzenesulphonic acid) induced colitis. Treatment with C142 or C150 reduced leukocyte infiltration to the submucosa and muscular propria of the inflamed gut. C142 or C150 rescued the loss of body weight and C150 decreased the weight of standard colon preparations proportional with 20% less tissue oedema. Both C142 and C150 curcumin analogues caused 25% decrease in the severity of colonic inflammation and haemorrhagic lesion size. Colonic MPO (myeloperoxidase) enzyme activity as an indicator of intense neutrophil infiltration was 50% decreased either by C142 or C150 Mannich curcuminoids. Lipopolysaccharide (LPS) co-treatment with Mannich curcuminoids inhibited NF-κB (nuclear factor kappa B) activity on a concentration-dependent manner in an NF-κB-driven luciferase expressing reporter cell line. Co-treatment with LPS and curcuminoids, C142 or C150, resulted in NF-κB inhibition with 3.57 µM or 1.6 µM half maximal effective concentration (EC50) values, respectively. C150 exerted a profound inhibition of the expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-4 (IL-4) in human PBMCs (peripheral blood mononuclear cells) upon LPS stimulus. Mannich curcuminoids reported herein possess a powerful anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Colitis/metabolismo , Curcumina/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Animales , Curcumina/análogos & derivados , Humanos , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
14.
Arch Pharm (Weinheim) ; 351(7): e1800062, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29888449

RESUMEN

The synthesis and in vitro cytotoxic characteristics of new imidazo[1,2-b]pyrazole-7-carboxamides were investigated. Following a hit-to-lead optimization exploiting 2D and 3D cultures of MCF-7 human breast, 4T1 mammary gland, and HL-60 human promyelocytic leukemia cancer cell lines, a 67-membered library was constructed and the structure-activity relationship (SAR) was determined. Seven synthesized analogues exhibited sub-micromolar activities, from which compound 63 exerted the most significant potency with a remarkable HL-60 sensitivity (IC50 = 0.183 µM).


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Pirazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Células HL-60 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Leucemia Promielocítica Aguda/patología , Células MCF-7 , Ratones , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
15.
Molecules ; 23(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072653

RESUMEN

The 8-hydroxyquinoline pharmacophore scaffold has been shown to possess a range of activities as metal chelation, enzyme inhibition, cytotoxicity, and cytoprotection. Based on our previous findings we set out to optimize the scaffold for cytoprotective activity for its potential application in central nervous system related diseases. A 48-membered Betti-library was constructed by the utilization of formic acid mediated industrial-compatible coupling with sets of aromatic primary amines such as anilines, oxazoles, pyridines, and pyrimidines, with (hetero)aromatic aldehydes and 8-hydroxiquinoline derivatives. After column chromatography and re-crystallization, the corresponding analogues were obtained in yields of 13⁻90%. The synthesized analogs were optimized with the utilization of a cytoprotection assay with chemically induced oxidative stress, and the most active compounds were further tested in orthogonal assays, a real time cell viability method, a fluorescence-activated cell sorting (FACS)-based assay measuring mitochondrial membrane potential changes, and gene expression analysis. The best candidates showed potent, nanomolar activity in all test systems and support the need for future studies in animal models of central nervous system (CNS) disorders.


Asunto(s)
Citoprotección/efectos de los fármacos , Oxiquinolina/síntesis química , Oxiquinolina/farmacología , Aldehídos/química , Compuestos de Anilina/química , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia/genética , Concentración 50 Inhibidora , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxiquinolina/química , Relación Estructura-Actividad
16.
Molecules ; 23(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388846

RESUMEN

Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer cases with poor overall survival rate in adults; therefore, there is a high unmet medical need for the development of novel therapeutics. Eight imidazo[1,2-b]pyrazole-7-carboxamides have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4), biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro. Imidazo[1,2-b]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with different potential. Optimization through structure activity relationship resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 nM, and 32.25 nM on HL-60, MOLT-4, MV-4-11 cells, respectively. Human primary fibroblasts were much less sensitive in the applied concentration range. Both monolayer or spheroid cultures of murine 4T1 and human MCF7 breast cancer cells were less sensitive to treatment with 1.5⁻10.8 µM IC50 values. Flow cytometry confirmed the absence of necrosis and revealed 60% late apoptotic population for MV-4-11, and 50% early apoptotic population for HL-60. MOLT-4 cells showed only about 30% of total apoptotic population. Toxicogenomic study of DU385 on the most sensitive MV-4-11 cells revealed altered expression of sixteen genes as early (6 h), midterm (12 h), and late response (24 h) genes upon treatment. Changes in ALOX5AP, TXN, and SOD1 expression suggested that DU385 causes oxidative stress, which was confirmed by depletion of cellular glutathione and mitochondrial membrane depolarization induction. Imidazo[1,2-b]pyrazole-7-carboxamides reported herein induced apoptosis in human leukemia cells at nanomolar concentrations.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evolución Molecular , Células HL-60 , Humanos , Estrés Oxidativo/efectos de los fármacos , Pirazoles/síntesis química
17.
Mediators Inflamm ; 2017: 9294018, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197019

RESUMEN

One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays.


Asunto(s)
Inflamación/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Animales , Linaje de la Célula , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Monocitos/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Fenotipo , Transducción de Señal , Resultado del Tratamiento , Microambiente Tumoral
18.
Int J Mol Sci ; 18(10)2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991167

RESUMEN

Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.


Asunto(s)
Membranas Mitocondriales/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/análogos & derivados , Curcumina/farmacología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Membranas Mitocondriales/efectos de los fármacos , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
19.
Cytotherapy ; 18(3): 360-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26857229

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have powerful immunosuppressive activity. This function of MSCs is attributed to plethora of the expressed immunosuppressive factors, such as galectin-1 (Gal-1), a pleiotropic lectin with robust anti-inflammatory effect. Nevertheless, whether Gal-1 renders or contributes to the immunosuppressive effect of MSCs has not been clearly established. Therefore, this question was the focus of a complex study. METHODS: MSCs were isolated from bone marrows of wild-type and Gal-1 knockout mice and their in vitro anti-proliferative and apoptosis-inducing effects on activated T cells were examined. The in vivo immunosuppressive activity was tested in murine models of type I diabetes and delayed-type hypersensitivity. RESULTS: Both Gal-1-expressing and -deficient MSCs inhibited T-cell proliferation. Inhibition of T-cell proliferation by MSCs was mediated by nitric oxide but not PD-L1 or Gal-1. In contrast, MSC-derived Gal-1 triggered apoptosis in activated T cells that were directly coupled to MSCs, representing a low proportion of the T-cell population. Furthermore, absence of Gal-1 in MSCs did not affect their in vivo immunosuppressive effect. CONCLUSIONS: These results serve as evidence that Gal-1 does not play a role in the systemic immunosuppressive effect of MSCs. However, a local contribution of Gal-1 to modulation of T-cell response by direct cell-to-cell interaction cannot be excluded. Notably, this study serves a good model to understand how the specificity of a pleiotropic protein depends on the type and localization of the producing effector cell and its target.


Asunto(s)
Comunicación Celular/genética , Galectina 1/fisiología , Factores Inmunológicos/fisiología , Células Madre Mesenquimatosas/metabolismo , Animales , Apoptosis/genética , Médula Ósea/metabolismo , Proliferación Celular/genética , Células Cultivadas , Galectina 1/genética , Factores Inmunológicos/genética , Inmunosupresores/metabolismo , Activación de Linfocitos/genética , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
20.
Int J Mol Sci ; 17(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886105

RESUMEN

Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.


Asunto(s)
Antineoplásicos/uso terapéutico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citocinas/genética , Citocinas/inmunología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Terapia Molecular Dirigida , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda