Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mar Drugs ; 21(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37888443

RESUMEN

Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally characterized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides found in one strain. The biological assays performed with the 34 isolated CPs confirmed the significance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp) on the activity of the compounds against serine protease and HeLa cancer cells.


Asunto(s)
Nostoc , Nostoc/metabolismo , Péptidos/metabolismo , Espectrometría de Masas
2.
Mar Drugs ; 20(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35200623

RESUMEN

Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG A, AEG625 and AEG657, and their interactions with metabolic enzymes are reported. Two aeruginosamides, AEG625 and AEG657, decreased the viability of human breast cancer cell line T47D, but neither of the peptides was active against human liver cancer cell line Huh7. AEGs also did not change the expression of MIR92b-3p, but for AEG625, the induction of oxidative stress was observed. In the presence of a liver S9 fraction containing microsomal and cytosolic enzymes, AEG625 and AEG657 showed high stability. In the same assays, quick removal of AEG A was recorded. The peptides had mild activity against three cytochrome P450 enzymes, CYP2C9, CYP2D6 and CYP3A4, but only at the highest concentration used in the study (60 µM). The properties of AEGs, i.e., cytotoxic activity and in vitro interactions with important metabolic enzymes, form a good basis for further studies on their pharmacological potential.


Asunto(s)
Antineoplásicos/farmacología , Cianobacterias/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Péptidos Cíclicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/aislamiento & purificación , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación
3.
J Appl Genet ; 63(1): 133-139, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34775545

RESUMEN

Somatic growth is considered to affect pace of the telomere attrition in vertebrates. As normally developed and dwarf fish differ in the body size we have decided to compare telomere length in the rainbow trout (Oncorhynchus mykiss) with normal growth and with growth reduced due to the dwarf condition. Examined 1-year-old fish with normal and dwarf appearance were siblings originated from androgenetic fully homozygous doubled haploid (DH) line of rainbow trout. Particular dwarf individuals had body deformities such as humpback, kyphosis, and lordosis. Somatic cells of examined rainbow trout had an average telomere length between 17 and 20 kb, comparable in females and males. Dwarf rainbow trout exhibited significantly lower body length and weight than their normally developed siblings even though no differences in the telomere length were found between these fishes. Statistical analysis did not exhibit any correlation between body size and the telomere length. Equal length of telomeres observed in the studied normal and dwarf rainbow trout suggests morphological and physiological differences in fish with different growth rates do not affect dynamics of telomeric DNA. Or any variation in the telomere length might have been levelled by telomerase that in rainbow trout is active in all tissues irrespective of the individual developmental stage.


Asunto(s)
Oncorhynchus mykiss , Telomerasa , Animales , Diploidia , Femenino , Haploidia , Humanos , Lactante , Masculino , Oncorhynchus mykiss/genética , Telómero/genética
4.
Toxins (Basel) ; 14(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35622577

RESUMEN

Even cyanobacteria from ecosystems of low biodiversity, such as the Baltic Sea, can constitute a rich source of bioactive metabolites. Potent toxins, enzyme inhibitors, and anticancer and antifungal agents were detected in both bloom-forming species and less commonly occurring cyanobacteria. In previous work on the Baltic Pseudanabaena galeata CCNP1313, the induction of apoptosis in the breast cancer cell line MCF-7 was documented. Here, the activity of the strain was further explored using human dermal fibroblasts, African green monkey kidney, cancer cell lines (T47D, HCT-8, and A549ACE2/TMPRSS2) and viruses (SARS-CoV-2, HCoV-OC43, and WNV). In the tests, extracts, chromatographic fractions, and the main components of the P. galeata CCNP1313 fractions were used. The LC-MS/MS analyses of the tested samples led to the detection of forty-five peptides. For fourteen of the new peptides, putative structures were proposed based on MS/MS spectra. Although the complex samples (i.e., extracts and chromatographic fractions) showed potent cytotoxic and antiviral activities, the effects of the isolated compounds were minor. The study confirmed the significance of P. galeata CCNP1313 as a source of metabolites with potent activity. It also illustrated the difficulties in assigning the observed biological effects to specific metabolites, especially when they are produced in minute amounts.


Asunto(s)
COVID-19 , Cianobacterias , Animales , Chlorocebus aethiops , Cromatografía Liquida , Ecosistema , Péptidos/farmacología , Extractos Vegetales , SARS-CoV-2 , Espectrometría de Masas en Tándem
5.
Biomolecules ; 11(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34439804

RESUMEN

The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Cianobacterias/química , Microalgas/química , Fitoplancton/química , Animales , Antibacterianos/química , Antineoplásicos/química , Océano Atlántico , Países Bálticos , Bahías/microbiología , Productos Biológicos/química , Línea Celular Tumoral , Mezclas Complejas/química , Mezclas Complejas/farmacología , Cianobacterias/metabolismo , Daphnia/efectos de los fármacos , Daphnia/fisiología , Depsipéptidos/química , Depsipéptidos/farmacología , Eutrofización , Agua Dulce/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Microalgas/metabolismo , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Fitoplancton/metabolismo , Aguas Salinas/química , Serina Proteasas/metabolismo
6.
Water Res ; 196: 117017, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765498

RESUMEN

Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.


Asunto(s)
Cianobacterias , Depsipéptidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda