Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biotechnol Appl Biochem ; 69(1): 172-182, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33398897

RESUMEN

The current research work was carried out to evaluate the effect of three different varieties (NARC-II, Williams 82, Ajmeri) of soybean along with single and coculture impact of Lactobacillus acidophilus and Lactobacillus casei on fermented soymilk. The periodically microbial and antioxidative activities of fermented soymilk were analyzed during the storage of 24 days. Moreover, the effect of fermentation on rheological and structural changes was examined along with isoflavone contents in fermented soymilk. Viability of cells and antioxidative activities were found to be significantly (P < 0.05) higher in fermented soymilk using mixed cultures. The rheological attributes demonstrated higher viscosity in coculture fermented soymilk. Scanning electron microscopic examination indicated that the growth characteristic of L. casei has a relatively more uniform texture and smaller pore size in comparison to L. acidophilus. Nevertheless, the combination of cultures exhibited precise pore formation with stronger cross-links of soybean protein throughout the structure. Assessment of isoflavones exhibited higher values, for daidzein (20.87 ppm) in comparison to genistein (6.57 ppm), in Ajmeri-based coculture soymilk. Conclusively, L. casei and L. acidophilous exhibited considerable antioxidant potential in the development of viscous, less porous, and rich in bioactive metabolites fermented soymilk, when used in combination and among varieties Ajmeri results it was the top of all. This suggests that the process evidence in this study could be recommended for high-quality soymilk production.


Asunto(s)
Isoflavonas , Lacticaseibacillus casei , Probióticos , Leche de Soja , Fermentación , Microbiología de Alimentos , Lactobacillus acidophilus
2.
J Microencapsul ; 38(6): 437-458, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34192983

RESUMEN

Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.


Asunto(s)
Probióticos , Alimentos Funcionales , Tracto Gastrointestinal , Viabilidad Microbiana
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda