Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 87(24): 13619-27, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109225

RESUMEN

Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.


Asunto(s)
Proteína HN/metabolismo , Hemaglutininas/metabolismo , Virus del Sarampión/metabolismo , Sarampión/virología , Ácido N-Acetilneuramínico/metabolismo , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/metabolismo , Animales , Aves , Línea Celular , Proteína HN/química , Proteína HN/genética , Hemaglutininas/química , Hemaglutininas/genética , Humanos , Sarampión/genética , Sarampión/metabolismo , Virus del Sarampión/química , Virus del Sarampión/genética , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/metabolismo , Virus de la Enfermedad de Newcastle/química , Virus de la Enfermedad de Newcastle/genética , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus
2.
J Virol ; 87(24): 13785-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109233

RESUMEN

Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.


Asunto(s)
Antivirales/farmacología , Encéfalo/virología , Virus del Sarampión/efectos de los fármacos , Sarampión/prevención & control , Proteínas Virales de Fusión/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Línea Celular , Humanos , Sarampión/tratamiento farmacológico , Sarampión/mortalidad , Sarampión/virología , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Ratones , Ratones Transgénicos , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Internalización del Virus/efectos de los fármacos
3.
J Virol ; 87(20): 10980-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903846

RESUMEN

Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal.


Asunto(s)
Virus Nipah/fisiología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Línea Celular , Análisis Mutacional de ADN , Humanos , Virus de la Enfermedad de Newcastle/genética , Virus Nipah/genética , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Envoltorio Viral/genética
4.
J Virol ; 86(10): 5730-41, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22438532

RESUMEN

The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.


Asunto(s)
Proteína HN/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Infecciones por Paramyxoviridae/metabolismo , Paramyxovirinae/metabolismo , Receptores Virales/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Sitios de Unión , Proteínas Portadoras , Línea Celular , Proteína HN/química , Proteína HN/genética , Humanos , Virus de la Enfermedad de Newcastle/química , Virus de la Enfermedad de Newcastle/enzimología , Virus de la Enfermedad de Newcastle/genética , Infecciones por Paramyxoviridae/virología , Paramyxovirinae/genética , Estructura Terciaria de Proteína , Proteínas Virales de Fusión/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
5.
J Biol Chem ; 286(49): 42141-42149, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21994935

RESUMEN

We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.


Asunto(s)
Colesterol/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Colesterol/metabolismo , Endosomas/metabolismo , Prueba de Complementación Genética , Hemaglutininas/química , Humanos , Orthomyxoviridae/metabolismo , Péptidos/química , Desnaturalización Proteica , Pliegue de Proteína , Virus ARN/metabolismo , Células Vero
6.
J Virol ; 85(16): 8422-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21653662

RESUMEN

We have previously described heterotypic peptides from parainfluenza virus that potently inhibit Nipah virus in vitro but are not efficacious in vivo. In contrast, our second-generation inhibitors, featuring a cholesterol moiety, are also efficacious in vivo. The difference between in vitro and in vivo results led us to investigate the basis for this discrepancy. Here, we compare the activities of the compounds in standard laboratory cells and in cells relevant to the natural tropism of Nipah virus, i.e., primary neurons, and show that while our first-generation inhibitors are poorly active in primary neurons, the cholesterol-conjugated compounds are highly potent. These results highlight the advantage of evaluating antiviral potency in cells relevant to natural host target tissue.


Asunto(s)
Antivirales/farmacología , Colesterol/farmacología , Neuronas/virología , Virus Nipah/efectos de los fármacos , Péptidos/farmacología , Proteínas del Envoltorio Viral/metabolismo , Antivirales/química , Línea Celular , Colesterol/metabolismo , Células Epiteliales/virología , Humanos , Virus Nipah/fisiología
7.
PLoS Pathog ; 6(10): e1001168, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060819

RESUMEN

In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.


Asunto(s)
Colesterol/uso terapéutico , Infecciones por Henipavirus/prevención & control , Virus Nipah/fisiología , Paramyxovirinae/fisiología , Proteínas Virales de Fusión/antagonistas & inhibidores , Internalización del Virus , Secuencias de Aminoácidos/efectos de los fármacos , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Chlorocebus aethiops , Colesterol/química , Colesterol/farmacología , Regulación hacia Abajo , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/terapia , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Virus Nipah/efectos de los fármacos , Virus Nipah/inmunología , Virus Nipah/patogenicidad , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/uso terapéutico , Células Vero , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/fisiología
8.
PLoS One ; 7(3): e30538, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396728

RESUMEN

Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.


Asunto(s)
Biología Computacional/métodos , Virus Hendra/metabolismo , Virus Nipah/metabolismo , Animales , Anticuerpos Neutralizantes/química , Antivirales/farmacología , Chlorocebus aethiops , ADN Complementario/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Células HEK293 , Humanos , Inmunoterapia/métodos , Ratas , Tecnología Farmacéutica/métodos , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda