Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chem Res Toxicol ; 36(3): 342-346, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36795024

RESUMEN

Studies of factors that impact electronic nicotine delivery systems (ENDSs) carbonyl compound (CC) emissions have been hampered by wide within-condition variability. In this study, we examined whether this variability may be related to heating coil temperature variations stemming from manufacturing differences. We determined the mean peak temperature rise (ΔTmax) and CC emissions from 75 Subox ENDSs powered at 30 W. We found that ΔTmax and CC emissions varied widely, with greater ΔTmax resulting in exponentially higher CC emissions. Also, 12% of atomizers accounted for 85% of total formaldehyde emissions. These findings suggest that major reductions in toxicant exposure might be achieved through regulations focusing on limiting coil temperature.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Temperatura , Nicotina , Calefacción , Nebulizadores y Vaporizadores , Sustancias Peligrosas
2.
Chem Res Toxicol ; 36(12): 1930-1937, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38032319

RESUMEN

Aftermarket pods designed to operate with prevalent electronic nicotine delivery system (ENDS) products such as JUUL are marketed as low-cost alternatives that allow the use of banned flavored liquids. Subtle differences in the design or construction of aftermarket pods may intrinsically modify the performance of the ENDS device and the resulting nicotine and toxicant emissions relative to the original equipment manufacturer's product. In this study, we examined the electrical output of a JUUL battery and the aerosol emissions when four different brands of aftermarket pods filled with an analytical-grade mixture of propylene glycol, glycerol, and nicotine were attached to it and puffed by machine. The aerosol emissions examined included total particulate matter (TPM), nicotine, carbonyl compounds (CCs), and reactive oxygen species (ROS). We also compared the puff-resolved power and TPM outputs of JUUL and aftermarket pods. We found that all aftermarket pods drew significantly greater electrical power from the JUUL battery during puffing and had different electrical resistances and resistivity. In addition, unlike the case with the original pods, we found that with the aftermarket pods, the power provided by the battery did not vary greatly with flow rate or puff number, suggesting impairment of the temperature control circuitry of the JUUL device when used with the aftermarket pods. The greater power output with the aftermarket pods resulted in up to three times greater aerosol and nicotine output than the original product. ROS and CC emissions varied widely across brands. These results highlight that the use of aftermarket pods can greatly modify the performance and emissions of ENDS. Consumers and public health authorities should be made aware of the potential increase in the level of toxicant exposure when aftermarket pods are employed.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Nicotina , Especies Reactivas de Oxígeno/análisis , Propilenglicol/análisis , Aerosoles , Material Particulado , Vapeo/efectos adversos
3.
Nicotine Tob Res ; 25(3): 412-420, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35965260

RESUMEN

INTRODUCTION: Electronic cigarettes (ECIGs) heat a nicotine-containing liquid to produce an inhalable aerosol. ECIG power (wattage) and liquid nicotine concentration are two factors that predict nicotine emission rate ("flux"). These factors can vary greatly across devices and users. AIMS AND METHODS: The purpose of this study was to examine ECIG device and liquid heterogeneity in "real world" settings and the association with predicted nicotine flux, nicotine yield, and total particulate matter (TPM) emissions. Past 30-day ECIG users (n = 84; mean age = 23.8 years [SD = 9.6]) reported device and liquid characteristics. Device power was measured via multimeter, device display screens, or obtained via labeling. Liquid nicotine concentration was obtained via labeling or through chemical analysis. Predicted nicotine flux, nicotine yield, and TPM associated with 10 4-second puffs were calculated for participants' primary devices. RESULTS: Participants' primary devices were box mods (42.9%), disposable vapes (20.2%), and pod mods (36.9%). Most participants (65.5%) reported not knowing their primary device wattage. Rebuildable/box mods had the greatest power range (11.1-120.0 W); pod mod power also varied considerably (4.1-21.7 W). Unlike device wattage, most participants (95.2%) reported knowing their liquid nicotine concentration, which ranged from 3.0 to 86.9 mg/ml (M = 36.0, SD = 29.3). Predicted nicotine flux varied greatly across products (range =12.0-160.1 µg/s, M = 85.6 µg/s, SD = 34.3). Box mods had the greatest variability in wattage and predicted nicotine flux, nicotine yield, and TPM yield. CONCLUSIONS: ECIG device and liquid heterogeneity influence nicotine and other toxicant emissions. Better measurement of ECIG device and liquid characteristics is needed to understand nicotine and toxicant emissions and to inform regulatory policy. IMPLICATIONS: ECIG device and liquid heterogeneity cause great variability in nicotine flux and toxicants emitted. These data demonstrate the need to examine device and liquid characteristics to develop empirically informed, health-promoting regulatory policies. Policies may include setting product standards such that ECIG products cannot (1) have nicotine fluxes much greater than that of a cigarette to decrease the risk of dependence, (2) have nicotine fluxes that are very low and thus would have minimal appeal to cigarette smokers and may serve as starter products for youth or nontobacco users, and (3) emit large amounts of particulate matter and other toxicants.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Humanos , Adulto Joven , Adulto , Nicotina/efectos adversos , Fumar , Material Particulado , Sustancias Peligrosas
4.
Tob Control ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072168

RESUMEN

INTRODUCTION: Vuse Solo is the first electronic nicotine delivery system (ENDS) authorised by the US Food and Drug Administration for marketing in the USA. Salient features of the Vuse Solo product such as nicotine form, draw resistance, power regulation and electrical characteristics have not been reported previously, and few studies have examined the nicotine and other toxicant emissions of this product. We investigated the design characteristics and toxicant emissions of the Solo as well as Alto, another Vuse product with a greater market share than Solo. METHODS: Total/freebase nicotine, propylene glycol to vegetable glycerin ratio, carbonyl compounds (CC) and reactive oxygen species (ROS) were quantified by gas chromatography, high-performance liquid chromatography and fluorescence from aerosol emissions generated in 15 puffs of 4 s duration. The electric power control system was also analysed. RESULTS: The average power delivered was 2.1 W and 3.9 W for Solo and Alto; neither system was temperature-controlled. Vuse Solo and Alto, respectively, emitted nicotine at a rate of 38 µg/s and 115 µg/s, predominantly in the protonated form (>90%). Alto's ROS yield was similar to a combustible cigarette and one order of magnitude greater than that of Solo. Total carbonyls from both products were two orders of magnitude lower than combustible cigarettes. CONCLUSION: Vuse Solo is an above-Ohm ENDS that emits approximately one-third the nicotine flux of a Marlboro Red cigarette (129 µg/s) and considerably lower CC and ROS yields than a combustible cigarette. With its higher power, the nicotine flux and ROS yield from Alto are similar to Marlboro Red levels; Alto may thus present greater abuse liability than the lower sales-volume Solo.

5.
Tob Control ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609493

RESUMEN

SIGNIFICANCE: IQOS is a heated tobacco product that has been widely advertised by Philip Morris International (PMI) as a reduced-exposure product compared with cigarettes. Reduced exposure results from reduced emission of toxicants which could be influenced by product constituents and user behaviour. This study aims to assess the influence of user behaviour, including device cleaning and puffing parameters, on toxicant emissions from IQOS. METHODS: IQOS aerosols were generated by a smoking machine using the combination of two cleaning protocols (after 1 stick vs 20 sticks) and five puffing regimes (including standard cigarette puffing regimes and IQOS-tailored regimes). The generated aerosols were analysed by targeted methods for phenol and carbonyl quantification, and by chemical screening for the identification of unknown compounds. RESULTS: Puffing parameters significantly affected phenol and carbonyl emissions while device cleaning had no effect. Harsher puffing conditions like more, longer, and larger puffs yielded higher levels for most toxicant emissions. Comparing the obtained data with data reported by PMI on 50 cigarette brands smoked under different puffing regimes showed various trends for phenol and carbonyl emissions, with IQOS emissions sometimes higher than cigarettes. Also, the chemical screening resulted in the tentative identification of ~100 compounds in the IQOS aerosols (most of limited toxicity data). CONCLUSION: This study showed that puffing parameters, but not device cleaning, have significant effects on carbonyl, phenol and other emissions. Data analysis highlighted the importance of comparing IQOS emissions with an array of commercial cigarettes tested under different puffing regimes before accepting reduced exposure claims.

6.
Chem Res Toxicol ; 35(3): 383-386, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35258926

RESUMEN

Standard laboratory electronic cigarette (ECIG) puffing protocols that do not consider user behaviors, such as removing and resinserting a pod, may underestimate emissions. This study compared JUUL emissions from four 10-puff bout procedures. We generated ECIG aerosol in a chamber using a JUUL device and measured concentrations of particulate matter ≤2.5 µm in diameter (PM2.5). The JUUL pod was removed and reinserted 0 times, 1 time, 4 times, and 9 times in experiments 1-4, respectively. Mean real-time PM2.5 concentration was 65.06 µg/m3 (SD = 99.53) for experiment 1, 375.50 µg/m3 (SD = 346.45) for experiment 2, 501.94 µg/m3 (SD = 450.00) for experiment 3, and 834.69 µg/m3 (SD = 578.34) for experiment 4. In this study, removing and reinserting a JUUL pod resulted in greater PM2.5 concentrations compared to puffing protocols in which the JUUL pod was not removed and reinserted. ECIGs should be examined and evaluated based on ECIG users' real-world behaviors.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Aerosoles , Humanos , Nicotina , Material Particulado , Fumadores
7.
Tob Control ; 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35568394

RESUMEN

OBJECTIVE: To highlight the general features of IQOS literature focusing on the chemical analysis of IQOS emissions. DATA SOURCES: PubMed, Web of Science and Scopus databases were searched on 8 November 2021 using the terms 'heated tobacco product', 'heat-not-burn', 'IQOS' and 'tobacco heating system' with time restriction (2010-2021). The search yielded 5480 records. STUDY SELECTION: Relevant publications on topics related to IQOS assessment were retrieved (n=341). Two reviewers worked separately and reached agreement by consensus. DATA EXTRACTION: Data on author affiliation and funding, article type and date of publication were extracted. Publications were categorised depending on their focus and outcomes. Data on IQOS emissions from the chemical analysis category were extracted. DATA SYNTHESIS: Of the included publications, 25% were published by Philip Morris International (PMI) affiliates or PMI-funded studies. PMI-sponsored publications on emissions, toxicology assessments and health effects were comparable in number to those reported by independent research, in contrast to publications on IQOS use, market trends and regulation. Data on nicotine yield, carbonyl emissions, other mainstream emissions, secondhand emissions and IQOS waste were compared between data sources to highlight agreement or disagreement between PMI-sponsored and independent research. CONCLUSIONS: Our analysis showed agreement between the data sources on nicotine yield from IQOS under the same puffing conditions. Also, both sources agreed that IQOS emits significantly reduced levels of some emissions compared with combustible cigarettes. However, independent studies and examination of PMI's data showed significant increases in other emissions from and beyond the Food and Drug Administration's harmful and potentially harmful constituents list.

8.
Tob Control ; 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086911

RESUMEN

INTRODUCTION: Tobacco smoking is a major cause of disease and premature death worldwide. While nicotine is recognised as the main addictive component in tobacco smoke, the total nicotine amount emitted (nicotine yield) and the rate of nicotine emission per second ('nicotine flux') contribute to the abuse liability of a given product. These variables can be regulated for public health ends and conveniently so for electronic cigarettes or electronic nicotine delivery systems (ENDS). METHODS: In this study we computed nicotine flux from previously reported values of yield and puff topography for a wide range of tobacco products. RESULTS: We found that nicotine flux varied widely across tobacco products, from less than 0.1 µg/s to more than 100 µg/s, and that since 2015 the upper limit of the ENDS nicotine flux range has risen significantly and is now approaching that of combustible cigarettes. We also found that products that differ in nicotine flux may exhibit similar nicotine yields due to differences in user puffing behavior. Nicotine flux is a tool that can be used to regulate nicotine emissions of tobacco products, including ENDS.

9.
Tob Control ; 31(Suppl 3): s234-s237, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328458

RESUMEN

BACKGROUND: The JUUL electronic cigarette (e-cigarette) remains popular in the USA and has a big prevalence among youth. In response to the popularity of JUUL and similar devices among youth, the US Food and Drug Administration issued in February 2020 an enforcement policy to remove all flavoured cartridge/pod-based e-cigarettes from the market except for tobacco and menthol. Subsequent studies showed that some users of the now-removed flavoured JUUL pods (especially cool mint) switched to menthol-flavoured JUUL pods with similar satisfaction. METHODS: We quantified menthol, nicotine, propylene glycol (PG) and vegetable glycerol (VG) in JUUL pod samples (Menthol, Classic Menthol and Cool Mint) that were purchased in 2017, 2018 and 2020 (only Menthol) to evaluate composition differences before and after the enforcement policy. We also analysed the samples to detect other cooling agents using a screening gas chromatography-mass spectrometry headspace method that we developed for this purpose. RESULTS: Menthol concentration was significantly higher in 2020 products than in products from prior years. Moreover, other cooling agents varied across pods. The PG/VG volume ratio was 27/63 in all pods examined. CONCLUSION: This study highlights how regulations intended to reduce e-cigarette prevalence among youth may influence changes in tobacco product characteristics in ways that regulators may not have foreseen.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Estados Unidos/epidemiología , Humanos , Mentol , United States Food and Drug Administration , Aromatizantes/análisis , Productos de Tabaco/análisis , Propilenglicol/análisis , Glicerol , Políticas , Vapeo/epidemiología
10.
Tob Control ; 31(5): 667-670, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33980722

RESUMEN

INTRODUCTION: Use of flavoured pod-mod-like disposable electronic cigarettes (e-cigarettes) has grown rapidly, particularly among cost-sensitive youth and young adults. To date, little is known about their design characteristics and toxicant emissions. In this study, we analysed the electrical and chemical characteristics and nicotine and pulmonary toxicant emission profiles of five commonly available flavoured disposable e-cigarettes and compared these data with those of a JUUL, a cartridge-based e-cigarette device that pod-mod-like disposables emulate in size and shape. METHODS: Device construction, electrical power and liquid composition were determined. Machine-generated aerosol emissions including particulate matter, nicotine, carbonyl compounds and heavy metals were also measured. Liquid and aerosol composition were measured by high-performance liquid chromatography, gas chromatography-mass spectrometry/flame ionisation detection, and inductively coupled plasma mass spectrometry. RESULTS: We found that unlike JUUL, disposable devices did not incorporate a microcontroller to regulate electrical power to the heating coil. Quality of construction varied widely. Disposable e-cigarette power ranged between 5 and 9 W and liquid nicotine concentration ranged between 53 and 85 mg/mL (~95% in the protonated form). In 15 puffs, total nicotine yield for the disposables ranged between 1.6 and 6.7 mg, total carbonyls ranged between 28 and 138 µg, and total metals ranged between 1084 and 5804 ng. JUUL emissions were near the floors of all of these ranges. CONCLUSIONS: Disposable e-cigarettes are designed with high nicotine concentration liquids and are capable of emitting much higher nicotine and carbonyl species relative to rechargeable look-alike e-cigarettes. These differences are likely due to the lower quality in construction, unreliable labelling and lack of temperature control regulation that limits the power during operation. From a public health perspective, regulating these devices is important to limit user exposure to carbonyls and nicotine, particularly because these devices are popular with youth and young adults.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adolescente , Aerosoles , Aromatizantes/análisis , Sustancias Peligrosas , Humanos , Nicotina/análisis , Adulto Joven
11.
Tob Control ; 31(Suppl 3): s245-s248, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328456

RESUMEN

SIGNIFICANCE: Electronic cigarettes (e-cigarettes) aerosolise liquids that contain nicotine, propylene glycol, glycerol and appealing flavours. In the USA, regulations have limited the availability of flavoured e-cigarettes in pod-based systems, and further tightening is expected. In response, some e-cigarette users may attempt to make their e-liquids (do-it-yourself, DIY). This study examined toxicant emissions from several aerosolised DIY e-liquids. METHODS: DIY additives were identified by reviewing users' responses to a hypothetical flavour ban, e-cigarette internet forums and DIY mixing internet websites. They include essential oils, cannabidiol, sucralose and ethyl maltol. E-liquids with varying concentrations and combinations of additives and tobacco and menthol flavours were prepared and were used to assess reactive oxygen species (ROS), carbonyl and phenol emissions in machine-generated aerosols. RESULTS: Data showed that adding DIY additives to unflavoured, menthol-flavoured or tobacco-flavoured e-liquids increases toxicant emissions to levels comparable with those from commercial flavoured e-liquids. Varying additive concentrations in e-liquids did not have a consistently significant effect on the tested emissions, yet increasing power yielded significantly higher ROS, carbonyl and phenol emissions for the same additive concentration. Adding nicotine to DIY e-liquids with sucralose yielded increase in some emissions and decrease in others, with freebase nicotine-containing e-liquid giving higher ROS emissions than that with nicotine salt. CONCLUSION: This study showed that DIY additives can impact aerosol toxicant emissions from e-cigarettes and should be considered by policymakers when restricting commercially available flavoured e-liquids.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Humanos , Nicotina , Especies Reactivas de Oxígeno , Mentol , Aromatizantes/análisis , Aerosoles , Sustancias Peligrosas , Fenoles
12.
Tob Control ; 30(3): 348-350, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32522818

RESUMEN

Some jurisdictions have instituted limits on electronic cigarette (ECIG) liquid nicotine concentration, in an effort to control ECIG nicotine yield, and others are considering following suit. Because ECIG nicotine yield is proportional to the product of liquid nicotine concentration (milligram per millilitre) and device power (watts) regulations that limit liquid nicotine concentration may drive users to adopt higher wattage devices to obtain a desired nicotine yield. In this study we investigated, under various hypothetical regulatory limits on ECIG liquid nicotine concentration, a scenario in which a user of a common ECIG device (SMOK TF-N2) seeks to obtain in 15 puffs the nicotine emissions equivalent to one combustible cigarette (ie, 1.8 mg). We measured total aerosol and carbonyl compound (CC) yields in 15 puffs as a function of power (15-80 W) while all else was held constant. The estimated nicotine concentration needed to achieve combustible cigarette-like nicotine yield at each power level was then computed based on the measured liquid consumption. We found that for a constant nicotine yield of 1.8 mg, reducing the liquid nicotine concentration resulted in greater amount of liquid aerosolised (p<0.01) and greater CC emissions (p<0.05). Thus, if users seek a given nicotine yield, regulatory limits on nicotine concentration may have the unintended consequence of increasing exposure to aerosol and respiratory toxicants. This outcome demonstrates that attempting to control ECIG nicotine yield by regulating one factor at a time may have unintended health effects and highlights the need to consider multiple factors and outcomes simultaneously when designing regulations.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Aerosoles , Sustancias Peligrosas , Humanos , Nicotina
13.
Tob Control ; 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963073

RESUMEN

In 2019, JUUL Labs began marketing in the European Union 'new technology' pods that incorporated a new wick that it claimed provided 'more satisfaction'. In this study, we compared design and materials of construction, electrical characteristics, liquid composition and nicotine and carbonyl emissions of new technology JUUL pods to their predecessors. Consistent with manufacturer's claims, we found that the new pods incorporated a different wicking material. However, we also found that the new pod design resulted in 50% greater nicotine emissions per puff than its predecessor, despite exhibiting unchanged liquid composition, device geometry and heating coil resistance. We found that when connected to the new technology pods, the JUUL power unit delivered a more consistent voltage to the heating coil. This behaviour suggests that the new coil-wick system resulted in better surface contact between the liquid and the temperature-regulated heating coil. Total carbonyl emissions did not differ across pod generations. That nicotine yields can be greatly altered with a simple substitution of wick material underscores the fragility of regulatory approaches that centre on product design rather than product performance specifications.

14.
Chem Res Toxicol ; 33(3): 727-730, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31957423

RESUMEN

Waterpipe tobacco smoking is a global epidemic. A persistent perception among users is that the water bubbler filters the smoke, reducing its risk profile. The objectives of this study were to quantify the purported filtering effect by comparing toxicant yield when a waterpipe was machine smoked with and without the smoke passing through the water bubbler. We found that the water bubbler did not reduce CO, NO, polycyclic aromatic hydrocarbons (PAHs), or dry particulate matter (DPM) yields but did reduce nicotine and carbonyl compounds (CCs) yields by approximately 50%. These mixed results were consistent with theoretical simulations of the mass transport processes involved.


Asunto(s)
Monóxido de Carbono/análisis , Óxido Nítrico/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación por Humo de Tabaco/análisis , Tabaco para Pipas de Agua/análisis , Humanos
15.
Chem Res Toxicol ; 33(9): 2374-2380, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786548

RESUMEN

Electronic cigarettes (ECIGs) have always been promoted as safer alternatives to combustible cigarettes. However, a growing amount of literature shows that while ECIGs do not involve combustion-derived toxicants, thermal degradation of the main constituents of ECIG liquid produces toxicants such as carbonyls. In this study, we report the detection of phenolic compounds in ECIG aerosols using a novel analytical method. The introduced method relies on liquid-liquid extraction to separate phenols from the major constituents of ECIG aerosol: propylene glycol (PG) and vegetable glycerol (VG). Phenol emissions from ECIGs were tested at different powers, puff durations, PG/VG ratios, nicotine benzoate concentrations, and flow rates to assess the influence of these operating parameters on phenol formation. The performance metrics showed that the analytical method has high specificity and reliability to separate and quantify phenolic compounds in ECIG aerosols. Increasing power and puff duration significantly increased all phenol emissions, while flow rate had no significant effects. The phenol profile in the ECIG aerosol was dominated by the unsubstituted phenol that reached comparable levels to those of IQOS, combustible cigarettes, and waterpipe. In contrast, low levels of the more toxic phenolic compounds, like catechol and hydroxyquinone, were quantified in ECIG aerosols. Emission of toxicants is presented, for the first time in this study, as the yield per unit of time, or flux (µg/s), which is more suitable for interstudy and interproduct comparison. This work demonstrates a robust analytical method for isolating and quantifying phenol emissions in ECIG aerosols. Using this method, the study shows that phenols, which are not present in the simple solution of nicotine benzoate dissolved in mixtures of PG/VG, are formed upon vaping. Phenol emissions are independent of the nicotine benzoate concentration but significantly correlated with the PG/VG ratio. Emissions increased with power and puff duration, consistent with conditions that lead to a higher temperature and greater thermal degradation.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Fenoles/análisis , Vapeo , Humanos , Estructura Molecular
16.
Chem Res Toxicol ; 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32635721

RESUMEN

Electronic cigarettes (ECIGs) are a class of tobacco products that emit a nicotine-containing aerosol by heating and vaporizing a liquid. Apart from initiating nicotine addiction in nonsmokers, a persistent concern about these products is that their emissions often include high levels of carbonyl species, toxicants thought to cause most noncancer pulmonary diseases in smokers. This study examined whether the phenomenon of film boiling can account for observations of high carbonyl emissions under certain operating conditions and, if so, whether film boiling theory can be invoked to predict conditions where high carbonyl emissions are likely. We measured the critical heat flux for several common heating materials and liquids and carbonyl emissions for several ECIG types while varying the power. We found that emissions rise drastically whenever the power exceeds the value corresponding to the critical heat flux. While limiting the heat flux to below this threshold can greatly reduce carbonyl exposure, ECIG manufacturer operating instructions often exceed it. Product regulations that limit heat flux may reduce the public health burden of electronic cigarette use.

17.
Chem Res Toxicol ; 32(6): 1235-1240, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31038931

RESUMEN

Waterpipe tobacco smoking (WTS) has been characterized as a global epidemic. Waterpipe smoke has been shown to contain and deliver significant doses of many of the toxicants known to cause cancer, respiratory, and cardiovascular diseases in cigarette smokers. It has also been shown that the charcoal used to heat the tobacco contributes most of the polycyclic aromatic hydrocarbons (PAHs) and carbon monoxide (CO) found in the smoke, two major causative agents in smoking-related lung cancer and heart disease, respectively. Possibly as a result of growing awareness of charcoal as a toxicant source, electrical heating elements (EHEs) are being marketed for waterpipe use as reduced harm charcoal substitutes. We measured thermal performance characteristics (tobacco burned, total aerosolized particulate matter) and toxicant emissions in WTS generated using three commercially available waterpipe EHEs and charcoal to examine the hypothesis that EHEs can function similarly to charcoal while presenting a reduced toxicant profile. Toxicants quantified included total particulate matter, nicotine, PAHs, CO, and volatile aldehydes delivered at the mouthpiece when the waterpipe was machine smoked using a standard protocol. We found that while EHEs involved an 80% reduction in total PAH and a 90% reduction in CO emissions, they also resulted in a several-fold increase in the potent respiratory toxicant acrolein. These mixed findings underscore the complexity of toxicant reduction by product manipulation and suggest that marketing EHEs as reduced harm products may be misleading.


Asunto(s)
Aldehídos/análisis , Monóxido de Carbono/análisis , Carbón Orgánico/química , Electricidad , Calefacción , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación por Humo de Tabaco/análisis , Fumar Tabaco , Tabaco para Pipas de Agua/análisis , Humanos
18.
Chem Res Toxicol ; 32(2): 312-317, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30656934

RESUMEN

Electronic cigarettes (ECIGs) are routinely advertised as a safer alternative to combustible cigarettes. ECIGs have been shown to emit less toxicants than conventional cigarettes. This study presents for the first time the mouthpiece emissions of carbon monoxide (CO) and small hydrocarbon gases, in addition to carbonyls, from a rebuildable atomizer sub-ohm device (SOD). Because ECIGs do not involve combustion, CO emissions are commonly thought to be a negligible component of ECIG aerosols. CO exposure is a major causative agent of heart disease among smokers. Aerosol generated by vaping a solution of propylene glycol and glycerol was collected in a small chamber. The gas phase was then directed for analysis to a long-path gas cell of a Fourier transform infrared instrument under reduced pressure. The effects of power, ECIG heating coil material, and coil geometry on the generation of small gases were assessed. Results showed that small gases, including CO, carbon dioxide, methane, ethylene, and acetylene, were detected in SOD-emitted gases. Electrical power and material of construction significantly affected the concentrations of the emitted gases. Nickel metal wire was more reactive than kanthal, nichrome, and stainless steel. Depending on use patterns and device operation, users of SOD devices may be exposed daily to similar levels of CO as are cigarette smokers. This finding casts doubt on the validity of CO as a biomarker to distinguish ECIG from tobacco cigarette use and suggests that some subset of ECIG users may be at risk from CO-related heart disease.


Asunto(s)
Monóxido de Carbono/análisis , Sistemas Electrónicos de Liberación de Nicotina , Hidrocarburos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Gases/química , Níquel/química
19.
Nicotine Tob Res ; 21(9): 1285-1288, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-30476301

RESUMEN

INTRODUCTION: IQOS is an emerging heated tobacco product marketed by Philip Morris International (PMI). Because the tobacco in IQOS is electrically heated and not combusted, PMI claims that it generates significantly lower toxicant levels than combustible cigarettes. To date, a few independent studies have addressed IQOS toxicant emissions, and none have reported reactive oxygen species (ROS), and the form of the nicotine emitted by the device. METHODS: In this study, IQOS aerosol was generated using a custom-made puffing machine. Two puffing regimens were used: Health Canada Intense and ISO. ROS, carbonyl compounds (CCs), and total nicotine and its partitioning between free-base and protonated forms were quantified in the IQOS aerosol by fluorescence, high-performance liquid chromatography, and gas chromatography, respectively. The same toxicants were also quantified in combustible cigarette aerosols for comparison. In addition, propylene glycol and vegetable glycerin were also measured in the IQOS tobacco and aerosol. RESULTS: IQOS and combustible cigarettes were found to emit similar quantities of total and free-base nicotine. IQOS total ROS (6.26 ± 2.72 nmol H2O2/session) and CC emissions (472 ± 19 µg/session) were significant, but 85% and 77% lower than levels emitted by combustible cigarettes. CONCLUSIONS: IQOS emits harmful constituents that are linked to cancer, pulmonary disease, and addiction in cigarette smokers. For a given nicotine intake, inhalation exposure to ROS and CCs from IQOS is likely to be significantly less than that for combustible cigarettes. IMPLICATIONS: IQOS is PMI's new heated tobacco product. PMI claims that because IQOS heats and does not burn tobacco it generates low toxicant yields. We found that one IQOS stick can emit similar free-base and total nicotine yields as a combustible cigarette. A pack-a-day equivalent user of IQOS may experience significant inhalation exposure of ROS and CCs compared to background air. However, substituting IQOS for combustible cigarettes will likely result in far lower ROS and carbonyl inhalation exposure for a given daily nicotine intake.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Calor , Nicotina/análisis , Especies Reactivas de Oxígeno/análisis , Productos de Tabaco/análisis , Aerosoles/análisis , Humanos , Peróxido de Hidrógeno/análisis , Exposición por Inhalación/análisis
20.
Tob Control ; 28(6): 678-680, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30745326

RESUMEN

INTRODUCTION: JUUL is an electronic cigarette (ECIG) with a compact form factor. It is prefilled with a liquid that is advertised to contain a high concentration of nicotine salt. JUUL commands 50% of the US ECIG market share, and its wide popularity with underage users has triggered unprecedented actions by the US FDA. Apart from its nicotine salt-containing liquid and compact form, a salient advertised design feature is a control circuit that limits the heating coil temperature, presumably reducing unwanted toxicants. In this study, several tobacco-flavoured JUUL devices were reverse engineered, and their aerosol emissions were studied. METHODS: Total nicotine and its partitioning (freebase and protonated), propylene glycol/vegetable glycerin (PG/VG) ratio, and carbonyls were quantified by gas chromatography (GC) and high performance liquid chromatography (HPLC). The temperature control functionality of JUUL was investigated using a temperature-controlled bath in which the coil was submerged. RESULTS: The liquid nicotine concentration was found to be 69 mg/mL, and the liquid and aerosol PG/VG ratio was found to be 30/70. In 15 puffs, JUUL emitted 2.05 (0.08) mg of nicotine, overwhelmingly in the protonated form. Carbonyl yields were significantly lower than those reported for combustible cigarettes, but similar to other closed-system ECIG devices. The heating coil resistance was 1.6 (0.66) Ohm, while the maximum power delivered by the JUUL device was 8.1 W. The control circuit limited the peak operating temperature to approximately 215C. CONCLUSIONS: JUUL emits a high-nicotine concentration aerosol predominantly in the protonated form. JUUL's nicotine-normalised formaldehyde and total aldehyde yields are lower than other previously studied ECIGs and combustible cigarettes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Formaldehído , Glicerol/análisis , Exposición por Inhalación , Nicotina , Propilenglicol/análisis , Vapeo , Carcinógenos/análisis , Cromatografía de Gases/métodos , Cromatografía Liquida/métodos , Aromatizantes/efectos adversos , Aromatizantes/análisis , Formaldehído/efectos adversos , Formaldehído/análisis , Humanos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Exposición por Inhalación/prevención & control , Nicotina/efectos adversos , Nicotina/análisis , Solventes/análisis , Vapeo/efectos adversos , Vapeo/epidemiología , Vapeo/prevención & control
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda