Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Fungi (Basel) ; 10(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921415

RESUMEN

Plastic pollution of the ocean is a major environmental threat. In this context, a better understanding of the microorganisms able to colonize and potentially degrade these pollutants is of interest. This study explores the colonization and biodegradation potential of fungal communities on foamed polystyrene and alternatives biodegradable plastics immersed in a marina environment over time, using the Brest marina (France) as a model site. The methodology involved a combination of high-throughput 18S rRNA gene amplicon sequencing to investigate fungal taxa associated with plastics compared to the surrounding seawater, and a culture-dependent approach to isolate environmentally relevant fungi to further assess their capabilities to utilize polymers as carbon sources. Metabarcoding results highlighted the significant diversity of fungal communities associated with both foamed polystyrene and biodegradable plastics, revealing a dynamic colonization process influenced by the type of polymer and immersion time. Notably, the research suggests a potential for certain fungal species to utilize polymers as a carbon source, emphasizing the need for further exploration of fungal biodegradation potential and mechanisms.

2.
Sci Total Environ ; 857(Pt 2): 159318, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36220465

RESUMEN

Plastic food packaging represents 40 % of the plastic production worldwide and belongs to the 10 most commonly found items in aquatic environments. They are characterized by high additives contents with >4000 formulations available on the market. Thus they can release their constitutive chemicals (i.e. additives) into the surrounding environment, contributing to chemical pollution in aquatic systems and to contamination of marine organism up to the point of questioning the health of the consumer. In this context, the chemical and toxicological profiles of two types of polypropylene (PP) and polylactic acid (PLA) food packaging were investigated, using in vitro bioassays and target gas chromatography mass spectrometry analyses. Plastic additives quantification was performed both on the raw materials, and on the material leachates after 5 days of lixiviation in filtered natural seawater. The results showed that all samples (raw materials and leachates) contained additive compounds (e.g. phthalates plasticizers, phosphorous flame retardants, antioxidants and UV-stabilizers). Differences in the number and concentration of additives between polymers and suppliers were also pointed out, indicating that the chemical signature cannot be generalized to a polymer and is rather product dependent. Nevertheless, no significant toxic effects was observed upon exposure to the leachates in two short-term bioassays targeting baseline toxicity (Microtox® test) and Pacific oyster Crassostrea gigas fertilization success and embryo-larval development. Overall, this study demonstrates that both petrochemical and bio-based food containers contain harmful additives and that it is not possible to predict material toxicity solely based on chemical analysis. Additionally, it highlights the complexity to assess and comprehend the additive content of plastic packaging due to the variability of their composition, suggesting that more transparency in polymer formulations is required to properly address the risk associated with such materials during their use and end of life.


Asunto(s)
Polipropilenos , Contaminantes Químicos del Agua , Polipropilenos/análisis , Embalaje de Alimentos , Contaminantes Químicos del Agua/análisis , Plásticos/análisis , Poliésteres/análisis , Polímeros/análisis , Bioensayo , Medición de Riesgo
3.
J Hazard Mater ; 427: 127883, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34863561

RESUMEN

Rubber products and debris with specific chemical signatures can release their constitutive compounds into the surrounding environment. We investigated the chemical toxicity of different types of new and used rubber products (tires, crumb rubber granulates, aquaculture rubber bands) on early life stages of a model marine organism, Pacific oyster Crassostrea gigas. Leachates obtained from used products were generally less toxic than those from new ones. Leachates from new products induced embryotoxicity at different concentrations: oyster-farming rubber bands (lowest observed effect concentration, LOEC = 1 g L-1) and crumb rubber granulates (LOEC = 1 g L-1) > tires (LOEC = 10 g L-1). Moreover, new oyster-farming rubber bands induced spermiotoxicity at 10 g L-1 (-29% survival) resulting in decreased oyster reproductive output (-17% fertilization yield). Targeted chemical analyses revealed some compounds (2 mineral contaminants, 15 PAHs, 2 PCBs) in leachates, which may have played a role. Rubber used in marine aquaculture (rubber bands) or present at sea as waste (tire, crumb rubber granulates) therefore release hazardous chemical molecules under realistic conditions, which may affect oyster development. Aquaculture development work is necessary to improve practices for eco-safety, as efforts to limit the contamination of marine environments by terrestrial rubber debris.


Asunto(s)
Crassostrea , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Agricultura , Animales , Acuicultura , Organismos Acuáticos , Contaminantes Químicos del Agua/toxicidad
4.
Mar Pollut Bull ; 181: 113936, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35850084

RESUMEN

Tires can release a large number of chemical compounds that are potentially hazardous for aquatic organisms. An ecophysiological system was used to do high-frequency monitoring of individual clearance, respiration rates, and absorption efficiency of juvenile oysters (8 months old) gradually exposed to four concentrations of tire leachates (equivalent masses: 0, 1, 10, and 100 µg tire mL-1). Leachates significantly reduced clearance (52 %) and respiration (16 %) rates from 1 µg mL-1, while no effect was observed on the absorption efficiency. These results suggest that tire leachates affect oyster gills, which are the organ of respiration and food retention as well as the first barrier against contaminants. Calculations of scope for growth suggested a disruption of the energy balance with a significant reduction of 57 %. Because energy balance directs whole-organism functions (e.g., growth, reproductive outputs), the present study calls for an investigation of the long-term consequences of chemicals released by tires.


Asunto(s)
Crassostrea , Animales , Organismos Acuáticos , Branquias , Respiración , Goma
5.
Harmful Algae ; 92: 101744, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113611

RESUMEN

The dinoflagellate genus Alexandrium comprises species that produce highly potent neurotoxins known as paralytic shellfish toxins (PST), and bioactive extracellular compounds (BEC) of unknown structure and ecological significance. The toxic bloom-forming species, Alexandrium minutum, is distributed worldwide and adversely affects many bivalves including the commercially and ecologically important Pacific oyster, Crassostrea gigas. In France, recurrent A. minutum blooms can co-occur with C. gigas spawning and larval development, and may endanger recruitment and population renewal. The present study explores how A. minutum affects oyster early development by exposing embryos and larvae, under controlled laboratory conditions, to two strains of A. minutum, producing only BEC or both PST and BEC. Results highlight the major role of BEC in A. minutum toxicity upon oyster development. The BEC strain caused lysis of embryos, the most sensitive stage to A. minutum toxicity among planktonic life stages. In addition, the non-PST-producing A. minutum strain inhibited hatching, disrupted larval swimming behavior, feeding, growth, and induced drastic decreases in survival and settlement of umbonate and eyed larvae (9 and 68 %, respectively). The findings indicated PST accumulation in oyster larvae (e.g. umbonate stages), possibly impairing development and settlement of larvae in response to the PST-producing strain. This work provides evidences that A. minutum blooms could hamper settlement of shellfish.


Asunto(s)
Crassostrea , Dinoflagelados , Toxinas Marinas , Animales , Francia , Larva , Toxinas Marinas/toxicidad
6.
Chemosphere ; 225: 639-646, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30901657

RESUMEN

Plastic debris are classified as a function of their size and recently a new class was proposed, the nanoplastics. Nano-sized plastics have a much greater surface area to volume ratio than larger particles, which increases their reactivity in aquatic environment, making them potentially more toxic. Only little information is available about their behavior whereas it crucially influences their toxicity. Here, we used dynamic light scattering (DLS) to explore the influence of environmental factors (fresh- and saltwater, dissolved organic matter) on the behavior (surface charge and aggregation state) of three different nano-polystyrene beads (50 nm), with (i) no surface functionalization (plain), (ii) a carboxylic or (iii) an amine functionalization. Overall, the positive amine particles were very mildly affected by changes in environmental factors with no effect of the salinity gradient (from 0 to 653 mM) and of a range 1-30 µg.L-1 and 1-10 µg.L-1 of organic matter in artificial seawater and ultrapure water, respectively. These observations are supposedly linked to a coating specificity leading to repulsive mechanisms. In contrast, the stability of the negatively charged carboxylic and plain nanobeads was lost under an increasing ionic strength, resulting in homo-aggregation (up to 10 µm). The increase in organic matter content had negligible effect on these two nanobeads. Analysis performed over several days demonstrated that nanoplastics formed evolving dynamic structures detected mainly with an increase of the homo-aggregation level. Thus, surface properties of given polymers/particles are expected to influence their fate in complex and dynamic aquatic environments.


Asunto(s)
Plásticos/química , Poliestirenos/química , Dispersión Dinámica de Luz , Nanopartículas , Concentración Osmolar , Tamaño de la Partícula , Plásticos/toxicidad , Poliestirenos/toxicidad , Salinidad , Agua de Mar , Propiedades de Superficie
7.
Environ Pollut ; 242(Pt B): 1598-1605, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30072219

RESUMEN

Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.


Asunto(s)
Diatomeas/efectos de los fármacos , Dinoflagelados/química , Toxinas Marinas/química , Feromonas/química , Bioensayo/métodos , Clorofila/metabolismo , Diatomeas/metabolismo , Fluorometría , Toxinas Marinas/toxicidad , Feromonas/análisis
8.
Environ Pollut ; 242(Pt B): 1226-1235, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30118910

RESUMEN

In the marine environment, most bivalve species base their reproduction on external fertilization. Hence, gametes and young stages face many threats, including exposure to plastic wastes which represent more than 80% of the debris in the oceans. Recently, evidence has been produced on the presence of nanoplastics in oceans, thus motivating new studies of their impacts on marine life. Because no information is available about their environmental concentrations, we performed dose-response exposure experiments with polystyrene particles to assess the extent of micro/nanoplastic toxicity. Effects of polystyrene with different sizes and functionalizations (plain 2-µm, 500-nm and 50-nm; COOH-50 nm and NH2-50 nm) were assessed on three key reproductive steps (fertilization, embryogenesis and metamorphosis) of Pacific oysters (Crassostrea gigas). Nanoplastics induced a significant decrease in fertilization success and in embryo-larval development with numerous malformations up to total developmental arrest. The NH2-50 beads had the strongest toxicity to both gametes (EC50 = 4.9 µg/mL) and embryos (EC50 = 0.15 µg/mL), showing functionalization-dependent toxicity. No effects of plain microplastics were recorded. These results highlight that exposures to nanoplastics may have deleterious effects on planktonic stages of oysters, presumably interacting with biological membranes and causing cyto/genotoxicity with potentially drastic consequences for their reproductive success.


Asunto(s)
Crassostrea/embriología , Desarrollo Embrionario/efectos de los fármacos , Fertilización/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Nanoestructuras/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Crassostrea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Células Germinativas/efectos de los fármacos , Larva/efectos de los fármacos , Masculino , Reproducción/efectos de los fármacos
9.
Chemosphere ; 208: 764-772, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29902761

RESUMEN

While the detection and quantification of nano-sized plastic in the environment remains a challenge, the growing number of polymer applications mean that we can expect an increase in the release of nanoplastics into the environment by indirect outputs. Today, very little is known about the impact of nano-sized plastics on marine organisms. Thus, the objective of this study was to investigate the toxicity of polystyrene nanoplastics (NPs) on oyster (Crassostrea gigas) gametes. Spermatozoa and oocytes were exposed to four NPs concentrations ranging from 0.1 to 100 mg L-1 for 1, 3 and 5 h. NPs coated with carboxylic (PS-COOH) and amine groups (PS-NH2) were used to determine how surface properties influence the effects of nanoplastics. Results demonstrated the adhesion of NPs to oyster spermatozoa and oocytes as suggested by the increase of relative cell size and complexity measured by flow-cytometry and confirmed by microscopy observations. A significant increase of ROS production was observed in sperm cells upon exposure to 100 mg L-1 PS-COOH, but was not observed with PS-NH2, suggesting a differential effect according to the NP-associated functional group. Altogether, these results demonstrate that the effects of NPs occur rapidly, are complex and are possibly associated with the cellular eco-corona, which could modify NPs behaviour and toxicity.


Asunto(s)
Crassostrea/efectos de los fármacos , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Animales , Células Germinativas/efectos de los fármacos , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda