Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Brain Topogr ; 37(3): 461-474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37823945

RESUMEN

Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.


Asunto(s)
Encéfalo , Electroencefalografía , Recién Nacido , Humanos , Electroencefalografía/métodos , Sueño , Benchmarking , Lenguaje
2.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793851

RESUMEN

Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.


Asunto(s)
Algoritmos , Electroencefalografía , Humanos , Electroencefalografía/métodos , Encéfalo/fisiología , Masculino , Adulto , Conducta Cooperativa , Prueba de Estudio Conceptual , Femenino , Procesamiento de Señales Asistido por Computador
3.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298430

RESUMEN

Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain-computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Reproducibilidad de los Resultados , Electrodos , Impedancia Eléctrica
4.
Brain Topogr ; 34(5): 555-567, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34258668

RESUMEN

Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies-the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states-AS and QS-in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.


Asunto(s)
Encéfalo , Electroencefalografía , Algoritmos , Mapeo Encefálico , Humanos , Recién Nacido , Sueño
5.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34640681

RESUMEN

Electrical cardiac and pulsatile interference is very difficult to remove from electroencephalographic (EEG) signals, especially if recorded in neonates, for which a small number of EEG channels is used. Several methods were proposed, including Blind Source Separation (BSS) methods that required the use of artificial cardiac-related signals to improve the separation of artefactual components. To optimize the separation of cardiac-related artefactual components, we propose a method based on Independent Component Analysis (ICA) that exploits specific features of the real electrocardiographic (ECG) signals that were simultaneously recorded with the neonatal EEG. A total of forty EEG segments from 19-channel neonatal EEG recordings with and without seizures were used to test and validate the performance of our method. We observed a significant reduction in the number of independent components (ICs) containing cardiac-related interferences, with a consequent improvement in the automated classification of the separated ICs. The comparison with the expert labeling of the ICs separately containing electrical cardiac and pulsatile interference led to an accuracy = 0.99, a false omission rate = 0.01 and a sensitivity = 0.93, outperforming existing methods. Furthermore, we verified that true brain activity was preserved in neonatal EEG signals reconstructed after the removal of artefactual ICs, demonstrating the effectiveness of our method and its safe applicability in a clinical context.


Asunto(s)
Algoritmos , Artefactos , Electroencefalografía , Frecuencia Cardíaca , Humanos , Recién Nacido , Convulsiones
6.
Int J Neural Syst ; 33(9): 2350046, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37497802

RESUMEN

Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.


Asunto(s)
Electroencefalografía , Epilepsia , Recién Nacido , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Redes Neurales de la Computación
7.
Psychophysiology ; 60(3): e14198, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36271701

RESUMEN

The ability to establish a connection between the direction of the other's gaze and the object that is observed has important implications in the development of social cognition and learning. In this study, we analyzed alpha and theta band oscillations in one group of 9-month-old infants by implementing a face-to-face live paradigm, which presented the infants with a triadic social interaction with a real human being. We compared neural activations in two experimental conditions: Congruent and Incongruent gaze shift following the appearance of an object. In the Incongruent object-gaze shift condition, we observed an increase of the theta power in comparison with the Congruent condition. We also found an enhancement of the alpha activity during the Congruent versus the Incongruent object-gaze condition. These findings confirm the involvement of the theta and alpha band activity in the detection of the gaze of others when it shifts toward a referential target. We consider that the theta band modulation could be associated with the processing of unexpected events. Furthermore, the increase of the alpha band activity during the Congruent object-gaze condition seems to be in agreement with prior findings on the mechanisms of internally controlled attention that emerge before the first year of life. The implementation of a live paradigm elicited a partially different oscillatory pattern in comparison with non-live standard paradigms, supporting the importance of an ecological set-up reproducing real-life conditions to study the development of social cognition.


Asunto(s)
Fijación Ocular , Aprendizaje , Humanos , Lactante , Interacción Social , Cognición Social , Encéfalo
8.
Front Hum Neurosci ; 17: 1305331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125713

RESUMEN

A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.

9.
PeerJ ; 10: e13734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846889

RESUMEN

Background: Artefact removal in neonatal electroencephalography (EEG) by visual inspection generally depends on the expertise of the operator, is time consuming and is not a consistent pre-processing step to the pipeline for the automated EEG analysis. Therefore, there is the need for the automated detection and removal of artefacts in neonatal EEG, especially of distinct and predominant artefacts such as flat line segments (mainly caused by instrumental error where contact between electrodes and head box is lost) and large amplitude fluctuations (related to neonatal movements). Method: A threshold-based algorithm for the automated detection and removal of flat line segments and large amplitude fluctuations in neonatal EEG of infants at term-equivalent age is developed. The algorithm applies thresholds to the absolute second difference, absolute amplitude, absolute first difference and the ratio between the frequency content above 50 Hz and the frequency content across all frequencies. Results: The algorithm reaches a median accuracy of 0.91, a median hit rate of 0.91 and a median false discovery rate of 0.37. Also, a significant improvement (≈10%) in the performance of a four-stage sleep classifier is observed after artefact removal with the proposed algorithm as compared to before its application. Significance: An automated artefact removal method contributes to the pipeline of automated EEG analysis. The proposed algorithm has shown to have good performance and to be effective in neonatal EEG applications.


Asunto(s)
Electroencefalografía , Sueño , Recién Nacido , Humanos , Electroencefalografía/métodos , Artefactos , Algoritmos , Movimiento
10.
Comput Methods Programs Biomed ; 222: 106950, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35717740

RESUMEN

BACKGROUND AND OBJECTIVE: Neonatal seizures are the most common clinical presentation of neurological conditions and can have adverse effects on the neurodevelopment of the neonatal brain. Visual detection of these events from continuous EEG recordings is a laborious and time-consuming task. We propose a novel algorithm for the automated detection of neonatal seizures. METHODS: In this study, we propose a novel deep learning model based on Graph Convolutional Neural Networks for the automated detection of neonatal seizures. Unlike other methods exploiting mainly the temporal information contained in EEG signals, our method also considers long-range spatial information, i.e., the interdependencies across EEG signals. The temporal information is embedded as graph signals in the graph representation of the EEG recordings and includes EEG features extracted from the EEG signals in the time and frequency domains. The spatial information is represented as functional connections among the EEG channels (calculated by the phase-locking value and the mean squared coherence) or as maps of Euclidean distances. These different spatial representations were evaluated to assess their efficiency in providing more discriminative features for an effective detection of neonatal seizures. The model performance was assessed on a publicly available dataset of continuous EEG signals recorded from 39 neonates by means of the area under the curve (AUC) and the AUC for specificity values greater than 90% (AUC90). RESULTS: After applying post-processing, consisting in smoothing the output of the classifiers, the models based on the mean squared coherence, the phase-locking value, and the Euclidean distance respectively reached a median AUC of 99.1% (IQR: 96.8%-99.6%), 99% (IQR: 95.2%-99.7%), and 97.3% (IQR: 86.3%-99.6%), and a median AUC90 of 96%, 95.7%, and 94.9%. These values are superior or comparable to those reached by methods considered as state-of-the-art in this field. CONCLUSIONS: Our results show that the EEG graph representations drawn from functional connectivity measures can effectively leverage interdependencies among EEG signals and lead to reliable detection of neonatal seizures. Furthermore, our model has the advantage of requiring only temporal annotations on seizures for the training phase, making it more appealing for clinical applications.


Asunto(s)
Electroencefalografía , Epilepsia , Algoritmos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Humanos , Recién Nacido , Redes Neurales de la Computación , Convulsiones/diagnóstico
11.
J Neural Eng ; 19(5)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36195069

RESUMEN

Objective.The aim of the present study was to elucidate the brain dynamics underlying the maintenance of a constant force level exerted during a visually guided isometric contraction task by optimizing a predictive multivariate model based on global and spectral brain dynamics features.Approach.Electroencephalography (EEG) was acquired in 18 subjects who were asked to press a bulb and maintain a constant force level, indicated by a bar on a screen. For intervals of 500 ms, we calculated an index of force stability as well as indices of brain dynamics: microstate metrics (duration, occurrence, global explained variance, directional predominance) and EEG spectral amplitudes in the theta, low alpha, high alpha and beta bands. We optimized a multivariate regression model (partial least square (PLS)) where the microstate features and the spectral amplitudes were the input variables and the indexes of force stability were the output variables. The issues related to the collinearity among the input variables and to the generalizability of the model were addressed using PLS in a nested cross-validation approach.Main results.The optimized PLS regression model reached a good generalizability and succeeded to show the predictive value of microstates and spectral features in inferring the stability of the exerted force. Longer duration and higher occurrence of microstates, associated with visual and executive control networks, corresponded to better contraction performances, in agreement with the role played by the visual system and executive control network for visuo-motor integration.Significance.A combination of microstate metrics and brain rhythm amplitudes could be considered as biomarkers of a stable visually guided motor output not only at a group level, but also at an individual level. Our results may play an important role for a better understanding of the motor control in single trials or in real-time applications as well as in the study of motor control.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Electroencefalografía/métodos , Mapeo Encefálico/métodos , Biomarcadores
12.
Front Neurosci ; 14: 577160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510607

RESUMEN

The assessment of a method for removing artifacts from electroencephalography (EEG) datasets often disregard verifying that global brain dynamics is preserved. In this study, we verified that the recently introduced optimized fingerprint method and the automatic removal of cardiac interference (ARCI) approach not only remove physiological artifacts from EEG recordings but also preserve global brain dynamics, as assessed with a new approach based on microstate analysis. We recorded EEG activity with a high-resolution EEG system during two resting-state conditions (eyes open, 25 volunteers, and eyes closed, 26 volunteers) known to exhibit different brain dynamics. After signal decomposition by independent component analysis (ICA), the independent components (ICs) related to eyeblinks, eye movements, myogenic interference, and cardiac electromechanical activity were identified with the optimized fingerprint method and ARCI approach and statistically compared with the outcome of the expert classification of the ICs by visual inspection. Brain dynamics in two different groups of denoised EEG signals, reconstructed after having removed the artifactual ICs identified by either visual inspection or the automated methods, was assessed by calculating microstate topographies, microstate metrics (duration, occurrence, and coverage), and directional predominance (based on transition probabilities). No statistically significant differences between the expert and the automated classification of the artifactual ICs were found (p > 0.05). Cronbach's α values assessed the high test-retest reliability of microstate parameters for EEG datasets denoised by the automated procedure. The total EEG signal variance explained by the sets of global microstate templates was about 80% for all denoised EEG datasets, with no significant differences between groups. For the differently denoised EEG datasets in the two recording conditions, we found that the global microstate templates and the sequences of global microstates were very similar (p < 0.01). Descriptive statistics and Cronbach's α of microstate metrics highlighted no significant differences and excellent consistency between groups (p > 0.5). These results confirm the ability of the optimized fingerprint method and the ARCI approach to effectively remove physiological artifacts from EEG recordings while preserving global brain dynamics. They also suggest that microstate analysis could represent a novel approach for assessing the ability of an EEG denoising method to remove artifacts without altering brain dynamics.

13.
Front Hum Neurosci ; 14: 243, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733219

RESUMEN

Various methods have been employed to investigate different aspects of brain activity modulation related to the performance of a cycling task. In our study, we examined how functional connectivity and brain network efficiency varied during an endurance cycling task. For this purpose, we reconstructed EEG signals at source level: we computed current densities in 28 anatomical regions of interest (ROIs) through the eLORETA algorithm, and then we calculated the lagged coherence of the 28 current density signals to define the adjacency matrix. To quantify changes of functional network efficiency during an exhaustive cycling task, we computed three graph theoretical indices: local efficiency (LE), global efficiency (GE), and density (D) in two different frequency bands, Alpha and Beta bands, that indicate alertness processes and motor binding/fatigue, respectively. LE is a measure of functional segregation that quantifies the ability of a network to exchange information locally. GE is a measure of functional integration that quantifies the ability of a network to exchange information globally. D is a global measure of connectivity that describes the extent of connectivity in a network. This analysis was conducted for six different task intervals: pre-cycling; initial, intermediate, and final stages of cycling; and active recovery and passive recovery. Fourteen participants performed an incremental cycling task with simultaneous EEG recording and rated perceived exertion monitoring to detect the participants' exhaustion. LE remained constant during the endurance cycling task in both bands. Therefore, we speculate that fatigue processes did not affect the segregated neural processing. We observed an increase of GE in the Alpha band only during cycling, which could be due to greater alertness processes and preparedness to stimuli during exercise. Conversely, although D did not change significantly over time in the Alpha band, its general reduction in the Beta bands during cycling could be interpreted within the framework of the neural efficiency hypothesis, which posits a reduced neural activity for expert/automated performances. We argue that the use of graph theoretical indices represents a clear methodological advancement in studying endurance performance.

14.
Front Neurosci ; 13: 441, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133785

RESUMEN

EEG recordings are generally affected by interference from physiological and non-physiological sources which may obscure underlying brain activity and hinder effective EEG analysis. In particular, cardiac interference can be caused by the electrical activity of the heart and/or cardiovascular activity related to blood flow. Successful EEG application in sports science settings requires a method for artifact removal that is automatic and flexible enough to be applied in a variety of acquisition conditions without requiring simultaneous ECG recordings that could restrict movement. We developed an automatic method for classifying and removing both electrical cardiac and cardiovascular artifacts (ARCI) that does not require additional ECG recording. Our method employs independent component analysis (ICA) to isolate data independent components (ICs) and identifies the artifactual ICs by evaluating specific IC features in the time and frequency domains. We applied ARCI to EEG datasets with cued artifacts and acquired during an eyes-closed condition. Data were recorded using a standard EEG wet cap with either 128 or 64 electrodes and using a novel dry electrode cap with either 97 or 64 dry electrodes. All data were decomposed into different numbers of components to evaluate the effect of ICA decomposition level on effective cardiac artifact detection. ARCI performance was evaluated by comparing automatic ICs classifications with classifications performed by experienced investigators. Automatic and investigator classifications were highly consistent resulting in an overall accuracy greater than 99% in all datasets and decomposition levels, and an average sensitivity greater than 90%. Best results were attained when data were decomposed into a fewer number of components where the method achieved perfect sensitivity (100%). Performance was also evaluated by comparing automatic component classification with externally recorded ECG. Results showed that ICs automatically classified as artifactual were significantly correlated with ECG activity whereas the other ICs were not. We also assessed that the interference affecting EEG signals was reduced by more than 82% after automatic artifact removal. Overall, ARCI represents a significant step in the detection and removal of cardiac-related EEG artifacts and can be applied in a variety of acquisition settings making it ideal for sports science applications.

15.
Front Neurosci ; 13: 982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31619953

RESUMEN

Novel state-of-the-art amplifier and cap systems enable Electroencephalography (EEG) recording outside of stationary lab systems during physical exercise and body motion. However, extensive preparation time, cleaning, and limited long-term stability of conventional gel-based electrode systems pose significant limitations in out-of-the-lab conditions. Dry electrode systems may contribute to rapid and repetitive mobile EEG acquisition with significantly reduced preparation time, reduced cleaning requirements, and possible self-application by the volunteer but are known for higher channel failure probability and increased sensitivity to movement artifacts. We performed a counterbalanced repeated measure endurance cycling study to objectively validate the performance and applicability of a novel commercially available 64-channel dry electrode cap for sport science. A total of 17 healthy volunteers participated in the study, performing an endurance cycling paradigm comprising five phases: (I) baseline EEG, (II) pre-cycling EEG, (III) endurance cycling, (IV) active recovery, and (V) passive recovery. We compared the performance of the 64-channel dry electrode cap with a commercial gel-based cap system in terms of usability metrics, reliability, and signal characteristics. Furthermore, we validated the performance of the dry cap during a realistic sport science investigation, verifying the hypothesis of a systematic, reproducible shift of the individual alpha peak frequency (iAPF) induced by physical effort. The average preparation time of the dry cap was one-third of the gel-based electrode caps. The average channel reliability of the dry cap varied between 80 ± 15% (Phase I), 66 ± 19% (Phase III), and 91 ± 10% (Phase V). In comparison, the channel reliability of the gel-based cap varied between 95 ± 3, 85 ± 9, and 82 ± 9%, respectively. No considerable differences were evident for the comfort evaluations nor the signal characteristics of both caps. A within-volunteers repeated measure analysis of variance (RM-ANOVA) did not show significant effects of the electrode type on the iAPF [F(1,12) = 1.670, p = 0.221, η p 2 = 0.122, Power = 0.222]. However, a significant increase of the iAPF exists from Phase II to Phases IV and V due to exhaustive physical task. In conclusion, we demonstrated that dry electrode cap is equivalent to the gel-based electrode cap based on signal characteristics, comfort, and signal information content, thereby confirming the usefulness of dry electrodes in sports science and other mobile applications involving ample movement.

16.
Front Hum Neurosci ; 13: 321, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31619979

RESUMEN

Hyperscanning studies, wherein brain activity is recorded from multiple participants simultaneously, offer an opportunity to investigate interpersonal dynamics during interactive tasks at the neurophysiological level. In this study, we employed a dyadic juggling paradigm and electroencephalography (EEG) hyperscanning to evaluate functional connectivity between EEG sources within and between jugglers' brains during individual and interactive juggling. We applied graph theoretical measures to identify significant differences in functional connectivity between the individual and interactive juggling conditions. Connectivity was measured in multiple juggler pairs with various skill levels where dyads were either skill-level matched or skill-level unmatched. We observed that global efficiency was reduced during paired juggling for less skilled jugglers and increased for more skilled jugglers. When jugglers were skill-level matched, additional reductions were found in the mean clustering coefficient and small-world topology during interactive juggling. A significant difference in hemispheric brain lateralization was detected between skill-level matched and skill-level unmatched jugglers during interactive juggling: matched jugglers had an increased right hemisphere lateralization while unmatched jugglers had an increased left hemisphere lateralization. These results reveal multiple differences in functional brain networks during individual and interactive juggling and suggest that similarities and disparities in individual skills can impact inter-brain dynamics in the performance and learning of motor tasks.

17.
PeerJ ; 6: e4380, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29492336

RESUMEN

BACKGROUND: EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as: the need for visual inspection of the separated independent components (subjectivity problem) and, in some cases, for the independent and simultaneous recording of the inspected artefacts to identify the artefactual independent components; a potentially heavy manipulation of the EEG signals; the use of linear classification methods; the use of simulated artefacts to validate the methods; no testing in dry electrode or high-density EEG datasets; applications limited to specific conditions and electrode layouts. METHODS: Our fingerprint method automatically identifies EEG ICs containing eyeblinks, eye movements, myogenic artefacts and cardiac interference by evaluating 14 temporal, spatial, spectral, and statistical features composing the IC fingerprint. Sixty-two real EEG datasets containing cued artefacts are recorded with wet and dry electrodes (128 wet and 97 dry channels). For each artefact, 10 nonlinear SVM classifiers are trained on fingerprints of expert-classified ICs. Training groups include randomly chosen wet and dry datasets decomposed in 80 ICs. The classifiers are tested on the IC-fingerprints of different datasets decomposed into 20, 50, or 80 ICs. The SVM performance is assessed in terms of accuracy, False Omission Rate (FOR), Hit Rate (HR), False Alarm Rate (FAR), and sensitivity (p). For each artefact, the quality of the artefact-free EEG reconstructed using the classification of the best SVM is assessed by visual inspection and SNR. RESULTS: The best SVM classifier for each artefact type achieved average accuracy of 1 (eyeblink), 0.98 (cardiac interference), and 0.97 (eye movement and myogenic artefact). Average classification sensitivity (p) was 1 (eyeblink), 0.997 (myogenic artefact), 0.98 (eye movement), and 0.48 (cardiac interference). Average artefact reduction ranged from a maximum of 82% for eyeblinks to a minimum of 33% for cardiac interference, depending on the effectiveness of the proposed method and the amplitude of the removed artefact. The performance of the SVM classifiers did not depend on the electrode type, whereas it was better for lower decomposition levels (50 and 20 ICs). DISCUSSION: Apart from cardiac interference, SVM performance and average artefact reduction indicate that the fingerprint method has an excellent overall performance in the automatic detection of eyeblinks, eye movements and myogenic artefacts, which is comparable to that of existing methods. Being also independent from simultaneous artefact recording, electrode number, type and layout, and decomposition level, the proposed fingerprint method can have useful applications in clinical and experimental EEG settings.

18.
Front Psychol ; 9: 1249, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079045

RESUMEN

The aim of this study was to examine EEG coherence before, during, and after time to exhaustion (TTE) trials in an endurance cycling task, as well as the effect of effort level and attentional focus (i.e., functional external, functional internal, and dysfunctional internal associative strategies-leading to Type 1, Type 2, and Type 3 performances) on brain functional connectivity. Eleven college-aged participants performed the TTE test on a cycle-ergometer with simultaneous EEG and rate of perceived exertion (RPE) monitoring. EEG data from 32 electrodes were divided into five effort level periods based on RPE values (Baseline, RPE 0-4, RPE 5-8, RPE 9-MAX, and Recovery). Within subjects RM-ANOVA was conducted to examine time to task completion across Type 1, Type 2, and Type 3 performance trials. RM-ANOVA (3 performance types × 5 effort levels) was also performed to compare the EEG coherence matrices in the alpha and beta bands for 13 pairs of electrodes (F3-F4, F3-P3, F4-P4, T7-T8, T7-P3, C3-C4, C3-P3, C4-P4, T8-P4, P3-P4, P3-O1, P4-O2, O2-O1). Significant differences were observed on TTE performance outcomes between Type 1 and Type 3, and between Type 2 and Type 3 performance states (p < 0.05), whereas Type 1 and Type 2 performance states did not differ. No significant main effects were observed on performance type (p > 0.05) for all frequency bands in any pair of electrodes of the coherence matrices. Higher EEG coherence values were observed at rest (Baseline) than during cycling (RPE 0-4, 5-8, 9-MAX) for all pairs of electrodes and EEG frequency bands irrespective of the type of performance (main effect of effort, p < 0.05). Interestingly, we observed a performance × effort interaction in C3-C4 in beta 3 band [F(4, 77) = 2.62, p = 0.038] during RPE 9-MAX for Type 3 performance as compared to Type 1 and Type 2 performances. These findings may have practical implications in the development of performance optimization strategies in cycling, as we found that focusing attention on a core component of the action could stimulate functional connectivity among specific brain areas and lead to enhanced performance.

19.
Front Hum Neurosci ; 12: 96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618975

RESUMEN

Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

20.
PeerJ ; 4: e2457, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688968

RESUMEN

BACKGROUND: Research on cooperative behavior and the social brain exists, but little research has focused on real-time motor cooperative behavior and its neural correlates. In this proof of concept study, we explored the conceptual notion of shared and complementary mental models through EEG mapping of two brains performing a real-world interactive motor task of increasing difficulty. We used the recently introduced participative "juggling paradigm," and collected neuro-physiological and psycho-social data. We were interested in analyzing the between-brains coupling during a dyadic juggling task, and in exploring the relationship between the motor task execution, the jugglers'skill level and the task difficulty. We also investigated how this relationship could be mirrored in the coupled functional organization of the interacting brains. METHODS: To capture the neural schemas underlying the notion of shared and complementary mental models, we examined the functional connectivity patterns and hyperbrain features of a juggling dyad involved in cooperative motor tasks of increasing difficulty. Jugglers' cortical activity was measured using two synchronized 32-channel EEG systems during dyadic juggling performed with 3, 4, 5 and 6 balls. Individual and hyperbrain functional connections were quantified through coherence maps calculated across all electrode pairs in the theta and alpha bands (4-8 and 8-12 Hz). Graph metrics were used to typify the global topology and efficiency of the functional networks for the four difficulty levels in the theta and alpha bands. RESULTS: Results indicated that, as task difficulty increased, the cortical functional organization of the more skilled juggler became progressively more segregated in both frequency bands, with a small-world organization in the theta band during easier tasks, indicative of a flow-like state in line with the neural efficiency hypothesis. Conversely, more integrated functional patterns were observed for the less skilled juggler in both frequency bands, possibly related to cognitive overload due to the difficulty of the task at hand (reinvestment hypothesis). At the hyperbrain level, a segregated functional organization involving areas of the visuo-attentional networks of both jugglers was observed in both frequency bands and for the easier task only. DISCUSSION: These results suggest that cooperative juggling is supported by integrated activity of specialized cortical areas from both brains only during easier tasks, whereas it relies on individual skills, mirrored in uncorrelated individual brain activations, during more difficult tasks. These findings suggest that task difficulty and jugglers' personal skills may influence the features of the hyperbrain network in its shared/integrative and complementary/segregative tendencies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda