Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Cell ; 76(1): 191-205.e10, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31445887

RESUMEN

Normal mitochondrial functions rely on optimized composition of their resident proteins, and proteins mistargeted to mitochondria need to be efficiently removed. Msp1, an AAA-ATPase in the mitochondrial outer membrane (OM), facilitates degradation of tail-anchored (TA) proteins mistargeted to the OM, yet how Msp1 cooperates with other factors to conduct this process was unclear. Here, we show that Msp1 recognizes substrate TA proteins and facilitates their transfer to the endoplasmic reticulum (ER). Doa10 in the ER membrane then ubiquitinates them with Ubc6 and Ubc7. Ubiquitinated substrates are extracted from the ER membrane by another AAA-ATPase in the cytosol, Cdc48, with Ufd1 and Npl4 for proteasomal degradation in the cytosol. Thus, Msp1 functions as an extractase that mediates clearance of mistargeted TA proteins by facilitating their transfer to the ER for protein quality control.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/enzimología , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
2.
Mol Cell ; 73(5): 1044-1055.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30738703

RESUMEN

Mitochondria import nearly all of their resident proteins from the cytosol, and the TOM complex functions as their entry gate. The TOM complex undergoes a dynamic conversion between the majority population of a three-channel gateway ("trimer") and the minor population that lacks Tom22 and has only two Tom40 channels ("dimer"). Here, we found that the porin Por1 acts as a sink to bind newly imported Tom22. This Por1 association thereby modulates Tom22 integration into the TOM complex, guaranteeing formation of the functional trimeric TOM complex. Por1 sequestration of Tom22 dissociated from the trimeric TOM complex also enhances the dimeric TOM complex, which is preferable for the import of TIM40/MIA-dependent proteins into mitochondria. Furthermore, Por1 appears to contribute to cell-cycle-dependent variation of the functional trimeric TOM complex by chaperoning monomeric Tom22, which arises from the cell-cycle-controlled variation of phosphorylated Tom6.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Ciclo Celular , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Porinas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
3.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744428

RESUMEN

Proper control of epidermal growth factor receptor (EGFR) signaling is important for maintaining cellular homeostasis. Given that EGFR signaling occurs at the plasma membrane and endosomes following internalization, endosomal trafficking of EGFR spatiotemporally regulates EGFR signaling. In this process, leucine-rich repeat kinase 1 (LRRK1) has multiple roles in kinase activity-dependent transport of EGFR-containing endosomes and kinase-independent sorting of EGFR into the intraluminal vesicles (ILVs) of multivesicular bodies. Active, phosphorylated EGFR inactivates the LRRK1 kinase activity by phosphorylating Y944. In this study, we demonstrate that LRRK1 facilitates EGFR dephosphorylation by PTP1B (also known as PTPN1), an endoplasmic reticulum (ER)-localized protein tyrosine phosphatase, at the ER-endosome contact site, after which EGFR is sorted into the ILVs of endosomes. LRRK1 is required for the PTP1B-EGFR interaction in response to EGF stimulation, resulting in the downregulation of EGFR signaling. Furthermore, PTP1B activates LRRK1 by dephosphorylating pY944 on the contact site, which promotes the transport of EGFR-containing endosomes to the perinuclear region. These findings provide evidence that the ER-endosome contact site functions as a hub for LRRK1-dependent signaling that regulates EGFR trafficking.


Asunto(s)
Endosomas , Receptores ErbB , Humanos , Células HeLa , Endosomas/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplásmico/metabolismo , Cuerpos Multivesiculares/metabolismo , Transporte de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Nat Chem Biol ; 16(12): 1361-1367, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958953

RESUMEN

Lipids play crucial roles as structural elements, signaling molecules and material transporters in cells. However, the functions and dynamics of lipids within cells remain unclear because of a lack of methods to selectively label lipids in specific organelles and trace their movement by live-cell imaging. We describe here a technology for the selective labeling and fluorescence imaging (microscopic or nanoscopic) of phosphatidylcholine in target organelles. This approach involves the metabolic incorporation of azido-choline, followed by a spatially limited bioorthogonal reaction that enables the visualization and quantitative analysis of interorganelle lipid transport in live cells. More importantly, with live-cell imaging, we obtained direct evidence that the autophagosomal membrane originates from the endoplasmic reticulum. This method is simple and robust and is thus powerful for real-time tracing of interorganelle lipid trafficking.


Asunto(s)
Autofagosomas/metabolismo , Azidas/química , Colina/análogos & derivados , Retículo Endoplásmico/metabolismo , Fosfatidilcolinas/metabolismo , Coloración y Etiquetado/métodos , Autofagosomas/ultraestructura , Transporte Biológico , Carbocianinas/metabolismo , Química Clic/métodos , Retículo Endoplásmico/ultraestructura , Colorantes Fluorescentes/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Fosfatidilcolinas/química , Rodamina 123/metabolismo , Proteína Fluorescente Roja
5.
Proc Natl Acad Sci U S A ; 116(32): 15817-15822, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337683

RESUMEN

Stimulation emission depletion (STED) microscopy enables ultrastructural imaging of organelle dynamics with a high spatiotemporal resolution in living cells. For the visualization of the mitochondrial membrane dynamics in STED microscopy, rationally designed mitochondrial fluorescent markers with enhanced photostability are required. Herein, we report the development of a superphotostable fluorescent labeling reagent with long fluorescence lifetime, whose design is based on a structurally reinforced naphthophosphole fluorophore that is conjugated with an electron-donating diphenylamino group. The combination of long-lived fluorescence and superphotostable features of the fluorophore allowed us to selectively capture the ultrastructures of the mitochondrial cristae with a resolution of ∼60 nm when depleted at 660 nm. This chemical tool provides morphological information of the cristae, which has so far only been observed in fixed cells using electron microscopy. Moreover, this method gives information about the dynamic ultrastructures such as the intermembrane fusion in different mitochondria as well as the intercristae mergence in a single mitochondrion during the apoptosis-like mitochondrial swelling process.


Asunto(s)
Colorantes Fluorescentes/química , Imagenología Tridimensional , Luz , Mitocondrias/química , Línea Celular , Humanos , Membranas Mitocondriales/metabolismo , Imagen de Lapso de Tiempo
6.
J Biol Chem ; 295(10): 3257-3268, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005660

RESUMEN

Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but also other acidic phospholipids between membranes in vitro Structure-based mutational analyses showed the presence of a possible lipid-binding cavity at the interface between the two subdomains, and two tyrosine residues in the flexible loops facilitated phospholipid transfer, likely by functioning as a gate to this lipid-binding cavity. We also found that a basic and hydrophobic loop with two tryptophan residues protruded from the molecule and facilitated binding to the acidic-lipid membranes, thereby achieving efficient phospholipid transfer.


Asunto(s)
Fosfolípidos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Humanos , Liposomas/química , Liposomas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilserinas/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína , Triptófano/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
7.
FASEB J ; 34(3): 4749-4763, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32037626

RESUMEN

Most phospholipids are synthesized via modification reactions of a simple phospholipid phosphatidic acid (PA). PA and its modified phospholipids travel between organelle membranes, for example, the endoplasmic reticulum (ER) and mitochondrial inner membrane, to be converted to the other phospholipids. To gain insight into mechanisms of the phospholipid biosynthetic pathways, we searched for factors whose loss affects the phospholipid synthesis using an in vitro phospholipid transport assay. Among the various factors that were tested, we noticed that a lack of Pah1, which is a phosphatidic acid phosphatase, led to severe defects in phospholipid synthesis, which was not rescued by re-expression of wild-type Pah1. These results indicated other mutations in addition to the deletion of Pah1. Interestingly, we found that stress conditions associated with the yeast transformation process triggered a disruption of the INO4 gene by insertion of the Ty1 retrotransposon in pah1∆ strains. Additionally, we noticed that loss of the diacylglycerol kinase Dgk1, which has an opposing function to Pah1, suppressed the insertional mutation of INO4. These findings suggest that normal Pah1 function is critical for the suppression of insertional mutations by retrotransposon elements.


Asunto(s)
Fosfatidato Fosfatasa/metabolismo , Fosfolípidos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Western Blotting , Cromatografía en Capa Delgada , Microscopía Fluorescente , Mutación/genética , Fosfatidato Fosfatasa/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
9.
Biol Chem ; 401(6-7): 821-833, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32229651

RESUMEN

Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos
10.
Nature ; 510(7503): 162-6, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24784582

RESUMEN

PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7∼ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.


Asunto(s)
Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Activación Enzimática , Fibroblastos , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Mutación/genética , Enfermedad de Parkinson , Fosforilación , Fosfoserina/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
11.
12.
Adv Exp Med Biol ; 997: 121-133, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815526

RESUMEN

Eukaryotic cells exhibit intracellular compartments called organelles wherein various specialized enzymatic reactions occur. Despite the specificity of the characteristic functions of organelles, recent studies have shown that distinct organelles physically connect and communicate with each other to maintain the integrity of their functions. In yeast, multiple inter- and intramitochondrial membrane contact sites (MCSs) were identified to date and were proposed to be involved in phospholipid biogenesis. In the present article, we focus on inter- and intra-organellar MCSs involving mitochondria and their tethering factors, such as the ERMES (endoplasmic reticulum (ER)-mitochondria encounter structure) complex and EMC (conserved ER membrane protein complex) between mitochondria and the ER, vCLAMP (vacuole and mitochondria patch) between mitochondria and vacuoles, and the MICOS (mitochondrial contact site) complex between the mitochondrial outer and inner membranes (MOM and MIM). All of these membrane-tethering factors were proposed to be involved in phospholipid biogenesis. Furthermore, the existence of functional interconnections among multiple organelle contact sites is suggested. In the present article, we summarize the latest discoveries in regard to MCSs and MCS-forming factors involving mitochondria and discuss their molecular functions, with particular focus on phospholipid metabolism in yeast.


Asunto(s)
Microdominios de Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/biosíntesis , Transducción de Señal , Levaduras/metabolismo , Transporte Biológico , Proteínas Fúngicas/metabolismo , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Unión Proteica , Levaduras/ultraestructura
13.
Traffic ; 15(9): 933-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24954234

RESUMEN

In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes (OM and IM) with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondrial integrity, thereby contributing to normal cell activities. As cellular locations for phospholipid synthesis are restricted to specific compartments such as the endoplasmic reticulum (ER) membrane and the mitochondrial inner membrane, newly synthesized phospholipids have to be transported and distributed properly from the ER or mitochondria to other cellular membranes. Although understanding of molecular mechanisms of phospholipid transport are much behind those of protein transport, recent studies using yeast as a model system began to provide intriguing insights into phospholipid exchange between the ER and mitochondria as well as between the mitochondrial OM and IM. In this review, we summarize the latest findings of phospholipid transport via mitochondria and discuss the implicated molecular mechanisms.


Asunto(s)
Transporte Biológico/fisiología , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo
14.
EMBO Rep ; 15(6): 670-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24781694

RESUMEN

The membrane topology of Om45 in the yeast mitochondrial outer membrane (OM) is under debate. Here, we confirm that Om45 is anchored to the OM from the intermembrane space (IMS) by its N-terminal hydrophobic segment. We show that import of Om45 requires the presequence receptors, Tom20 and Tom22, and the import channel of Tom40. Unlike any of the known OM proteins, Om45 import requires the TIM23 complex in the inner membrane, a translocator for presequence-containing proteins, and the membrane potential (ΔΨ). Therefore, Om45 is anchored to the OM via the IMS by a novel import pathway involving the TIM23 complex.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Interacciones Hidrofóbicas e Hidrofílicas , Immunoblotting , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Octoxinol , Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 289(8): 4827-38, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24385427

RESUMEN

Mitochondrial proteins require protein machineries called translocators in the outer and inner membranes for import into and sorting to their destination submitochondrial compartments. Among them, the TIM22 complex mediates insertion of polytopic membrane proteins into the inner membrane, and Tim22 constitutes its central insertion channel. Here we report that the conserved Cys residues of Tim22 form an intramolecular disulfide bond. By comparison of Tim22 Cys → Ser mutants with wild-type Tim22, we show that the disulfide bond of Tim22 stabilizes Tim22 especially at elevated temperature through interactions with Tim18, which are also important for the stability of the TIM22 complex. We also show that lack of the disulfide bond in Tim22 impairs the assembly of TIM22 pathway substrate proteins into the inner membrane especially when the TIM22 complex handles excess amounts of substrate proteins. Our findings provide a new insight into the mechanism of the maintenance of the structural and functional integrity of the TIM22 complex.


Asunto(s)
Disulfuros/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Antiportadores/metabolismo , Cisteína/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Serina/genética , Temperatura
16.
Cell Mol Life Sci ; 71(19): 3767-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24866973

RESUMEN

Mitochondria move, fuse and divide in cells. The dynamic behavior of mitochondria is central to the control of their structure and function. Three conserved mitochondrial dynamin-related GTPases (i.e., mitofusin, Opa1 and Drp1 in mammals and Fzo1, Mgm1 and Dnm1 in yeast) mediate mitochondrial fusion and division. In addition to dynamins, recent studies demonstrated that phospholipids in mitochondria also play key roles in mitochondrial dynamics by interacting with dynamin GTPases and by directly changing the biophysical properties of the mitochondrial membranes. Changes in phospholipid composition also promote mitophagy, which is a selective mitochondrial degradation process that is mechanistically coupled to mitochondrial division. In this review, we will discuss the biogenesis and function of mitochondrial phospholipids.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Fosfolípidos/biosíntesis , Animales , Citidina Difosfato Diglicéridos/metabolismo , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
EMBO J ; 29(17): 2875-87, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20622808

RESUMEN

Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS-targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS protein, Mdm35p. In vitro import assays show that import of Ups proteins requires Mdm35p. Loss of Mdm35p led to a decrease in steady state levels of Ups proteins in mitochondria. In addition, mdm35Delta cells displayed a similar phenotype to ups1Deltaups2Deltaups3Delta cells. Interestingly, unlike typical import machineries, Mdm35p associated stably with Ups proteins at a steady state after import. Demonstrating that Mdm35p is a functional component of Ups-Mdm35p complexes, restoration of Ups protein levels in mdm35Delta mitochondria failed to restore phospholipid metabolism. These findings provide a novel mechanism in which the formation of functional protein complexes drives mitochondrial protein import.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Viabilidad Microbiana , Modelos Biológicos , Fosfolípidos/metabolismo , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética
18.
Hepatol Res ; 44(14): E368-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24612069

RESUMEN

AIM: Increased serum α-fetoprotein (AFP) has been associated with a good prognosis following acute liver failure (ALF), but the levels of the fucosylated fraction of AFP (Lens culinaris agglutinin-reactive fraction of AFP [AFP-L3]) following acute liver injury remain unknown. The aim of the present study was to investigate the clinical significance of AFP and AFP-L3 in patients with acute liver injury. METHODS: We investigated the serum levels of AFP and highly sensitive AFP-L3% in 27 patients with acute-onset autoimmune hepatitis (AIH), 28 patients with acute hepatitis (AH) and 22 patients with ALF at the onset using a highly sensitive immunoassay (micro-total analysis system). RESULTS: The serum AFP levels were increased in patients with AIH, AH and ALF, but the levels did not significantly differ among them. However, the mean AFP-L3% level was significantly higher in patients with AIH than in patients with AH (P = 0.0039). Moreover, significantly more patients with AIH demonstrated AFP-L3 positivity (≥10%) when compared with patients with AH (P = 0.014). Although the percentage of AFP-L3 positivity increased with AFP levels, at low serum AFP levels (<10 ng/mL), significantly more patients with AIH demonstrated AFP-L3 positivity than did patients with AH (P = 0.024) or ALF (P = 0.038). CONCLUSION: We demonstrated for the first time that highly sensitive AFP-L3% levels were increased at the onset of AIH. The mechanism underlying the increase in AFP-L3 remains to be elucidated, but this finding may reflect an alteration of the glycosylation such as hyperfucosylation, which can influence the modifications of self-antigens in hepatocytes.

19.
iScience ; 27(3): 109189, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38420588

RESUMEN

Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study, we performed a chemical-genetic screening using yeast and identified small molecules capable of inhibiting phosphatidylcholine (PC) biogenesis, which we designated PC inhibitors 1, 2, 3, and 4 (PCiB-1, 2, 3, and 4). Biochemical analyses indicated that PCiB-2, 3, and 4 inhibited the phosphatidylethanolamine (PE) methyltransferase activity of Cho2, whereas PCiB-1 may inhibit PE transport from mitochondria to the endoplasmic reticulum (ER). Interestingly, we found that PCiB treatment resulted in mitochondrial fragmentation, which was suppressed by expression of a dominant-negative mutant of the mitochondrial division factor Dnm1. These results provide evidence that normal PC biogenesis is important for the regulation of mitochondrial division.

20.
J Biol Chem ; 287(52): 43961-71, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23124206

RESUMEN

Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase, Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to mitochondria and converted to PE. After its synthesis, a portion of PE moves back to the ER. Two mitochondrial proteins located in the intermembrane space, Ups1p and Ups2p, have been shown to regulate PE metabolism by controlling the export of PE. It remains to be determined where PS is decarboxylated in mitochondria and whether decarboxylation is coupled to trafficking of PS. Here, using fluorescent PS as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria, we show that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd1p, Ups1p, and Ups2p and decarboxylated to PE by Psd1p in the inner membrane. Interestingly, Ups1p is required for the maintenance of Psd1p and therefore PE production. Restoration of Psd1p levels rescued PE production defects in ups1Δ mitochondria. Our data provide novel mechanistic insight into PE biogenesis in mitochondria.


Asunto(s)
Carboxiliasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfatidiletanolaminas/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Activo/fisiología , Carboxiliasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Fosfatidiletanolaminas/genética , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda