Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38619941

RESUMEN

In certain neurological disorders such as stroke, the impairment of upper limb function significantly impacts daily life quality and necessitates enhanced neurological control. This poses a formidable challenge in the realm of rehabilitation due to its intricate nature. Moreover, the plasticity of muscle synergy proves advantageous in assessing the enhancement of motor function among stroke patients pre and post rehabilitation training intervention, owing to the modular control strategy of central nervous system. It also facilitates the investigation of long-term alterations in remodeling of muscle functional performance among patients undergoing clinical rehabilitation, aiming to establish correlations between changes in muscle synergies and stroke characteristics such as type, stage, and sites. In this study, a three-week rehabilitation monitoring experiment was conducted to assess the motor function of stroke patients at different stages of rehabilitation based on muscle synergy performance. Additionally, we aimed to investigate the correlation between clinical scale scores, rehabilitation stages, and synergy performance in order to provide a more comprehensive understanding of stroke patient recovery. The results of 7 healthy controls and 16 stroke patients showed that high-functioning patients were superior to low-functioning patients in terms of motor function plasticity towards healthy individuals. Moreover, there was a high positive correlation between muscle synergies and clinical scale scores in high-functioning patients, and the significance gradually emerged with treatment, highlighting the potential of muscle synergy plasticity as a valuable tool for monitoring rehabilitation progress. The potential of this study was also demonstrated for elucidating the physiological mechanisms underlying motor function reconstruction within the central nervous system, which is expected to promote the further application of muscle synergy in clinical assessment.


Asunto(s)
Músculo Esquelético , Plasticidad Neuronal , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Masculino , Femenino , Músculo Esquelético/fisiopatología , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Plasticidad Neuronal/fisiología , Anciano , Adulto , Resultado del Tratamiento , Electromiografía , Extremidad Superior/fisiopatología
2.
Foods ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928741

RESUMEN

The polysaccharides were extracted from the leaves of Mallotus oblongifolius (MO) using an ultrasonic-assisted extraction method in this study. The main variables affecting the yield of polysaccharides extracted from Mallotus appallatus (MOPS) were identified and optimized while concurrently investigating its antioxidant capacity, hypoglycemic activity, and digestive properties. The results indicated that the optimal ultrasound-assisted extraction of MOPS involved an ultrasound power of 200 W, a liquid-to-solid ratio of 25:1 (mL:g), an extraction temperature of 75 °C, and an ultrasound time of 45 min, leading to an extraction yield of (7.36 ± 0.45)% (m/m). The MOPS extract exhibited significant scavenging activity against DPPH and ABTS radicals with IC50 values of (25.65 ± 0.53) µg/mL and (100.38 ± 0.38) µg/mL, respectively. Furthermore, it effectively inhibited the enzymatic activities of α-glucosidase and α-amylase with IC50 values of (2.27 ± 0.07) mg/mL and (0.57 ± 0.04) mg/mL, respectively. The content of MOPS remained relatively stable in the stomach and small intestine; however, their ability to scavenge DPPH radicals and ABTS radicals and exhibit reducing power was attenuated, and the inhibition of α-amylase and α-glucosidase activity was diminished. In conclusion, the ultrasonic extraction of MOPS showed feasibility and revealed antioxidant and hypoglycemic effects. However, the activities were significantly reduced after gastric and small intestinal digestion despite no significant change in the MOPS content.

3.
IEEE Trans Biomed Eng ; 71(1): 195-206, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37436865

RESUMEN

OBJECTIVE: Post-stroke transcranial magnetic stimulation (TMS) has gradually become a brain intervention to assist patients in the recovery of motor function. The long lasting regulatory of TMS may involve the coupling changes between cortex and muscles. However, the effects of multi-day TMS on motor recovery after stroke is unclear. METHODS: This study proposed to quantify the effects of three-week TMS on brain activity and muscles movement performance based on a generalized cortico-muscular-cortical network (gCMCN). The gCMCN-based features were further extracted and combined with the partial least squares (PLS) method to predict the Fugl-Meyer of upper extremity (FMUE) in stroke patients, thereby establishing an objective rehabilitation method that can evaluate the positive effects of continuous TMS on motor function. RESULTS: We found that the improvement of motor function after three-week TMS was significantly correlated with the complexity trend of information interaction between hemispheres and the intensity of corticomuscular coupling. In addition, the fitting coefficient ([Formula: see text]) for predicted and actual FMUE before and after TMS were 0.856 and 0.963, respectively, suggesting that the gCMCN-based measurement may be a promising method for evaluating the therapeutic effect of TMS. CONCLUSION: From the perspective of a novel brain-muscles network with dynamic contraction as the entry point, this work quantified TMS-induced connectivity differences while evaluating the potential efficacy of multi-day TMS. SIGNIFICANCE: It provides a unique insight for the further application of intervention therapy in the field of brain diseases.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Magnética Transcraneal/métodos , Técnicas Estereotáxicas , Encéfalo
4.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585960

RESUMEN

Background: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights: Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.

5.
Brain Stimul ; 17(2): 460-468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593972

RESUMEN

BACKGROUND: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.


Asunto(s)
Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Estimulación del Nervio Vago/métodos , Vibración , Pupila/fisiología , Respuesta Galvánica de la Piel/fisiología , Nervio Vago/fisiología
6.
medRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746275

RESUMEN

Background: Inflammation contributes to morbidity following subarachnoid hemorrhage (SAH). Transauricular vagus nerve stimulation (taVNS) offers a noninvasive approach to target the inflammatory response following SAH. Methods: In this prospective, triple-blinded, randomized, controlled trial, twenty-seven patients were randomized to taVNS or sham stimulation. Blood and cerebrospinal fluid (CSF) were collected to quantify inflammatory markers. Cerebral vasospasm severity and functional outcomes (modified Rankin Scale, mRS) were analyzed. Results: No adverse events occurred. Radiographic vasospasm was significantly reduced (p = 0.018), with serial vessel caliber measurements demonstrating a more rapid return to normal than sham (p < 0.001). In the taVNS group, TNF-α was significantly reduced in both plasma (days 7 and 10) and CSF (day 13); IL-6 was also significantly reduced in plasma (day 4) and CSF (day 13) (p < 0.05). Patients receiving taVNS had higher rates of favorable outcomes at discharge (38.4% vs 21.4%) and first follow-up (76.9% vs 57.1%), with significant improvement from admission to first follow-up (p = 0.014), unlike the sham group (p = 0.18). The taVNS group had a significantly lower rate of discharge to skilled nursing facility or hospice (p = 0.04). Conclusion: taVNS is a non-invasive method of neuro- and systemic immunomodulation. This trial supports that taVNS following SAH can mitigate the inflammatory response, reduce radiographic vasospasm, and potentially improve functional and neurological outcomes. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04557618.

7.
medRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562875

RESUMEN

Background: Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. Materials and methods: The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. Discussion: Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. Trial registration: Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.

8.
medRxiv ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38633771

RESUMEN

Introduction: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. 3,10,13 However, the effects of taVNS on cardiovascular dynamics in critically ill patients like those with SAH have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population 5 . Therefore, we assessed the impact of both acute taVNS and repetitive taVNS on cardiovascular function in this study. Methods: In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a Sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram (ECG) readings and vital signs. We compared long-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored rapidly responsive cardiovascular biomarkers in patients exhibiting clinical improvement. Results: We found that repetitive taVNS did not significantly alter heart rate, corrected QT interval, blood pressure, or intracranial pressure. However, taVNS increased overall heart rate variability and parasympathetic activity from 5-10 days after initial treatment, as compared to the sham treatment. Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than 1 point in their Modified Rankin Score at the time of discharge. Conclusions: Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. Trial registration: NCT04557618.

9.
IEEE Trans Biomed Eng ; 69(4): 1328-1339, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34559633

RESUMEN

OBJECTIVE: While the corticomuscularcoupling between motor cortex and muscle tissue has received considerable attention, which is typically quantitative measure to evaluate neural signals synchronization in the motor control system, little work has been published regarding the effect of underlying delay of two coupled physiological signals on coherence. METHODS: In this study, we developed a novel delay estimation method, named rate of voxels change (RVC), detecting time delay in two coupled physiological signals. Based on RVC framework, delay compensation was used to adjust magnitude squared coherence (MSC) image. To illustrate the effectiveness of the RVC method, we compared the estimated delays and the adjusted MSC results based on RVC method and corticomuscular coherence with time lag (CMCTL) method. RESULTS: The simulation results suggested that RVC method was not only superior to the CMCTL method in estimating different time delays, but also has better optimization effect on MSC image. The experimental results further confirmed that delay estimated by the proposed RVC method was more in line with the underlying physiology (controls: 22.8 ms vs patients: 34.5 ms). Meanwhile, RVC-based delay compensation could significantly optimize the MSC of specific regions. SIGNIFICANCE: This study proved that RVC has remarkably higher reliability in detecting time delay between coupled neurophysiological signals, and the application of RVC was an improvement on the previous studies that mainly focused on biased MSC estimation.


Asunto(s)
Corteza Motora , Músculo Esquelético , Simulación por Computador , Electromiografía/métodos , Humanos , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
10.
IEEE Trans Med Imaging ; 41(6): 1575-1586, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35030075

RESUMEN

Brain networks allow a topological understanding into the pathophysiology of stroke-induced motor deficits, and have been an influential tool for investigating brain functions. Unfortunately, currently applied methods generally lack in the recognition of the dynamic changes in the cortical networks related to muscle activity, which is crucial to clarify the alterations of the cooperative working patterns in the motor control system after stroke. In this study, we integrate corticomuscular and intermuscular interactions to cortico-cortical network and propose a novel closed-loop construction of cortico-muscular-cortical functional network, named closed-loop network (CLN). Directional characteristic in terms of differentiating causal interactions is endowed on basis of the CLN framework, further expanding the definition of functional connectivity (FC) and effective connectivity (EC) dedicated to CLN. Next, CLN is applied to stroke patients to reveal the underlying after-effects mechanism of low frequency repetitive transcranial magnetic stimulation (rTMS) induced alterations of cortical physiologic functions during movement. Results show that the short-term modulation of rTMS is reflected in the enhancement of information interaction within the interhemispheric primary motor regions and inhibition of the coupling between motor cortex and effector muscles. CLN provides a new perspective for the study of motor-related cortical networks with muscle activities involvement instead of being restricted to brain network analysis of behaviors.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Encéfalo/fisiología , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Movimiento/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Estimulación Magnética Transcraneal/métodos
11.
J Neural Eng ; 19(2)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35366651

RESUMEN

Objective. Transcranial magnetic stimulation (TMS) is an experimental therapy for promoting motor recovery from hemiparesis. At present, hemiparesis patients' responses to TMS are variable. To maximize its therapeutic potential, we need an approach that relates the electrophysiology of motor recovery and TMS. To this end, we propose corticomuscular network (CMN) representing the holistic motor system, including the cortico-cortical pathway, corticospinal tract, and muscle co-activation.Approach. CMN is made up of coherence between pairs of electrode signals and spatial locations of the electrodes. We associated coherence and graph features of CMN with Fugl-Meyer Assessment (FMA) for the upper extremity. Besides, we compared CMN between 8 patients with hemiparesis and 6 healthy controls and contrasted CMN of patients before and after a 1 Hz TMS.Main results. Corticomuscular coherence (CMC) correlated positively with FMA. The regression model between FMA and CMC between five pairs of channels had 0.99 adjusted and ap-value less than 0.01. Compared to healthy controls, CMN of patients tended to be a small-world network and was more interconnected with higher CMC. CMC between cortex and triceps brachii long head was higher in patients. 15 min 1 Hz TMS protocol induced coherence changes beyond the stimulation side and had a limited impact on CMN parameters that are related to motor recovery.Significance. CMN is a potential clinical approach to quantify rehabilitating progress. It also sheds light on the desirable electrophysiological effects of TMS based on which rehabilitating strategies can be optimized.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Electromiografía , Humanos , Corteza Motora/fisiología , Paresia/diagnóstico , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos
12.
IEEE Trans Biomed Eng ; 69(10): 3119-3130, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35320084

RESUMEN

The muscle synergy hypothesis assumes that the nervous system controls muscles in groups to simplify behavioral tasks, which makes it possible for modularizing motor function assessment. This paper presents a new assessment method based on muscle synergy space (MSS) model to evaluate motor functions after stroke. It consists of spatiotemporal feature module, muscle activation module and synergy activation module, and focuses on the spatial and temporal characteristics of muscle synergies via synergy vectors and activation coefficients. We further applied this method to reveal spatial and temporal characteristics difference of muscle synergy between healthy controls and stroke patients. The effectiveness and accuracy of MSS model were proved by significant positive correlations between Fugl-Meyer score and the total number of optimal synergies of three modules. This measurement methodology could serve as a quantitative indicator for motor function and provide more scientific rehabilitation guidance.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Músculo Esquelético , Simulación del Espacio , Extremidad Superior
13.
IEEE J Biomed Health Inform ; 25(6): 2281-2292, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33090963

RESUMEN

Corticomuscular coupling reflects nonlinear interactions and multi-layer neural information transmission between the motor cortex and effector muscle in the sensorimotor system. Transfer spectral entropy (TSE) method has been used to describe corticomuscular coupling within single scale. As an extension of TSE, multiscale transfer spectral entropy (MSTSE) is proposed in this paper to depict multi-layer of neural information transfer between two coupling signals. The reliability and effectiveness of MSTSE were verified on data generated by nonlinear numerical models and those of a force tracking task. Compared with TSE, MSTSE is more robust to the embedding dimension and performs optimally in the detection of the coupling properties. Further analysis of the physiological signals showed that the MSTSE provided more detailed band characteristics than the single scale TSE measurement. MSTSE indicates significant coupling scattered in alpha, beta and low gamma bands during the force tracking task. Besides, the coupling strength in the descending direction of the beta band was significantly higher than that in the ascending direction. This study constructs multi-scale coupling information to provide a new perspective for exploring corticomuscular interaction.


Asunto(s)
Electroencefalografía , Músculo Esquelético , Electromiografía , Entropía , Humanos , Reproducibilidad de los Resultados
14.
IEEE Trans Biomed Eng ; 68(11): 3261-3272, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33764872

RESUMEN

OBJECTIVE: While neuroplasticity and functional reorganization during motor recovery can be indirectly reflected and evaluated by functional corticomuscular coupling (fCMC), little work has been published regarding the cortical origin of abnormal muscle synergy and compensatory mechanism in the separation movement of stroke patients. METHODS: In this study, we proposed to use extended partial directed coherence (ePDC) combined with an optimal spatial filtering approach to estimate fCMC in stroke patients and healthy controls, and further established muscle synergy model (MSM) to jointly explore the modulation mechanism between cortex and muscles. RESULTS: Compared to healthy controls, stroke patients had significantly reduced coupling strength in both descending and ascending pathway. Moreover, the MSM were abnormal with high variability and low similarity in the separation stage of stroke patients. Further exploration of the positive relationship between fCMC characteristics and MSM parameters proved the possibility of using fCMC-MSM-based correlation indicator to evaluate abnormality of the cortical related synergy movement as well as the rehabilitation level of stroke patients. CONCLUSION: We developed a computational procedure to evaluate the correlation between fCMC and MSM in stroke patients. SIGNIFICANCE: This article provides a quantitative evaluation metrics based on fCMC to reveal the deficits during poststroke motor restoration and a promising approach to help patients correct abnormal movement habits, paving the way for neurophysiological assessment of neuromuscular control in conjunction with clinical scores.


Asunto(s)
Minorías Sexuales y de Género , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Electroencefalografía , Electromiografía , Humanos , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda