Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Bioinformatics ; 21(Suppl 6): 123, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33203351

RESUMEN

BACKGROUND: The identification of early mild cognitive impairment (EMCI), which is an early stage of Alzheimer's disease (AD) and is associated with brain structural and functional changes, is still a challenging task. Recent studies show great promises for improving the performance of EMCI identification by combining multiple structural and functional features, such as grey matter volume and shortest path length. However, extracting which features and how to combine multiple features to improve the performance of EMCI identification have always been a challenging problem. To address this problem, in this study we propose a new EMCI identification framework using multi-modal data and graph convolutional networks (GCNs). Firstly, we extract grey matter volume and shortest path length of each brain region based on automated anatomical labeling (AAL) atlas as feature representation from T1w MRI and rs-fMRI data of each subject, respectively. Then, in order to obtain features that are more helpful in identifying EMCI, a common multi-task feature selection method is applied. Afterwards, we construct a non-fully labelled subject graph using imaging and non-imaging phenotypic measures of each subject. Finally, a GCN model is adopted to perform the EMCI identification task. RESULTS: Our proposed EMCI identification method is evaluated on 210 subjects, including 105 subjects with EMCI and 105 normal controls (NCs), with both T1w MRI and rs-fMRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that our proposed framework achieves an accuracy of 84.1% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.856 for EMCI/NC classification. In addition, by comparison, the accuracy and AUC values of our proposed framework are better than those of some existing methods in EMCI identification. CONCLUSION: Our proposed EMCI identification framework is effective and promising for automatic diagnosis of EMCI in clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Automático , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neuroimagen
2.
Artículo en Inglés | MEDLINE | ID: mdl-32010682

RESUMEN

Schizophrenia (SZ) is a functional mental disorder that seriously affects the social life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention of researchers. At present, study of brain network based on resting-state functional magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification by studying functional network alteration. However, previous studies based on brain network analysis are not very effective for SZ identification. Therefore, we propose an improved SZ identification method using multi-view graph measures of functional brain networks. Firstly, we construct an individual functional connectivity network based on Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by the brain network analysis method as feature representations. Next, in order to consider the relationships between measures within the same brain region in feature selection, multi-view measures are grouped according to the corresponding regions and Sparse Group Lasso is applied to identify discriminative features based on this feature grouping structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ identification task. To evaluate our proposed method, computational experiments are conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed method can obtain an accuracy of 93.10% for SZ identification. By comparison, our method is more effective for SZ identification than some existing methods.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda