Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
2.
Nat Immunol ; 23(5): 768-780, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314848

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos/metabolismo , Humanos , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores
3.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958334

RESUMEN

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Infección Irruptiva , ARN Viral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
4.
Immunity ; 55(7): 1316-1326.e4, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690062

RESUMEN

Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , Vacunación
5.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750048

RESUMEN

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Humanos , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Glicoproteína de la Espiga del Coronavirus
6.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33951417

RESUMEN

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos Inmunodominantes/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Secuencias de Aminoácidos , Linfocitos T CD4-Positivos , Niño , Convalecencia , Proteínas de la Nucleocápside de Coronavirus/química , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Epítopos Inmunodominantes/química , Masculino , Persona de Mediana Edad , Fenotipo , Fosfoproteínas/química , Fosfoproteínas/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Trends Immunol ; 42(11): 956-959, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34580004

RESUMEN

Reformulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines with variant strains is being pursued to combat the global surge in infections. We hypothesize that this may be suboptimal due to immune imprinting from earlier vaccination or infection with the original SARS-CoV-2 strain. New strategies may be needed to improve efficacy of SARS-CoV-2 variant vaccines.


Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
8.
J Immunol ; 208(10): 2267-2271, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487578

RESUMEN

Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Centro Germinal , Humanos , Tonsila Palatina , SARS-CoV-2 , Células T Auxiliares Foliculares
9.
Immunol Cell Biol ; 101(10): 964-974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725525

RESUMEN

Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Australia , Inmunoglobulina G , Pueblos Indígenas , Inmunidad , Anticuerpos Antivirales
10.
J Immunol ; 207(2): 735-744, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34244296

RESUMEN

Characterization of germinal center B and T cell responses yields critical insights into vaccine immunogenicity. Nonhuman primates are a key preclinical animal model for human vaccine development, allowing both lymph node (LN) and circulating immune responses to be longitudinally sampled for correlates of vaccine efficacy. However, patterns of vaccine Ag drainage via the lymphatics after i.m. immunization can be stochastic, driving uneven deposition between lymphoid sites and between individual LN within larger clusters. To improve the accurate isolation of Ag-exposed LN during biopsies and necropsies, we developed and validated a method for coformulating candidate vaccines with tattoo ink in both mice and pigtail macaques. This method allowed for direct visual identification of vaccine-draining LN and evaluation of relevant Ag-specific B and T cell responses by flow cytometry. This approach is a significant advancement in improving the assessment of vaccine-induced immunity in highly relevant nonhuman primate models.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Ganglios Linfáticos/inmunología , Vacunas/inmunología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Células Cultivadas , Femenino , Centro Germinal/inmunología , Humanos , Inmunización/métodos , Tinta , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Tatuaje/métodos , Vacunación/métodos
11.
Proc Natl Acad Sci U S A ; 117(39): 24384-24391, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913053

RESUMEN

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T cells in vitro, with CD4+ T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8+ T cell epitopes, A2/S269-277 and A2/Orf1ab3183-3191 Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/S269+CD8+ and A2/Orf1ab3183+CD8+ populations indicated that A2/S269+CD8+ T cells were detected at comparable frequencies (∼1.3 × 10-5) in acute and convalescent HLA-A*02:01+ patients. These frequencies were higher than those found in uninfected HLA-A*02:01+ donors (∼2.5 × 10-6), but low when compared to frequencies for influenza-specific (A2/M158) and Epstein-Barr virus (EBV)-specific (A2/BMLF1280) (∼1.38 × 10-4) populations. Phenotyping A2/S269+CD8+ T cells from COVID-19 convalescents ex vivo showed that A2/S269+CD8+ T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8+ T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/S269+CD8+ T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8+ T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8+ T cell immunity in COVID-19.


Asunto(s)
Betacoronavirus/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Antígeno HLA-A2/inmunología , Neumonía Viral/inmunología , Linfocitos T CD4-Positivos/inmunología , COVID-19 , Epítopos de Linfocito T , Femenino , Humanos , Memoria Inmunológica , Inmunofenotipificación , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Poliproteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas Virales/química , Proteínas Virales/inmunología
12.
Immunol Cell Biol ; 100(10): 750-752, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36222736

RESUMEN

A recently published article has confirmed that a novel immunization method of sustained and escalating antigen delivery augments the magnitude, quality and durability of humoral immune responses.


Asunto(s)
VIH-1 , Inmunidad Humoral , Centro Germinal , Antígenos , Inmunización
13.
Immunol Cell Biol ; 100(1): 49-60, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687553

RESUMEN

Humans are exposed to influenza virus through periodic infections. Due to these repeated exposures, human populations commonly have elevated antibody titers targeting the conserved internal influenza virus nucleoprotein (NP). Despite the presence of anti-NP antibodies, humans are acutely susceptible to drifted influenza viruses with antigenically different surface proteins and the protective potential of human NP antibodies is unclear. In this study, high levels of anti-NP antibody and NP-specific B cells were detected in both adult humans and influenza-infected mice, confirming that NP is a major target of humoral immunity. Through sorting single B cells from influenza-exposed human adults, we generated a panel of 11 anti-NP monoclonal antibodies (mAbs). The majority of anti-NP human mAbs generated were capable of engaging cellular Fc receptors and bound NP on the surface of influenza-infected cell lines in vitro, suggesting that anti-NP mAbs have the potential to mediate downstream Fc effector functions such as antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis. However, human anti-NP mAbs were not protective in vivo when passively transferred into a murine influenza challenge model. Future in vivo studies examining the synergistic effect of anti-NP mAbs infused with other influenza-specific mAbs are warranted.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Humanos , Ratones , Nucleoproteínas , Prevalencia
14.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541850

RESUMEN

Natural killer (NK) cells are an important component in the control of influenza virus infection, acting to both clear virus-infected cells and release antiviral cytokines. Engagement of CD16 on NK cells by antibody-coated influenza virus-infected cells results in antibody-dependent cellular cytotoxicity (ADCC). Increasing the potency of antibody-mediated NK cell activity could ultimately lead to improved control of influenza virus infection. To understand if NK cells can be functionally enhanced following exposure to influenza virus-infected cells, we cocultured human peripheral blood mononuclear cells (PBMCs) with influenza virus-infected human alveolar epithelial (A549) cells and evaluated the capacity of NK cells to mediate antibody-dependent functions. Preincubation of PBMCs with influenza virus-infected cells markedly enhanced the ability of NK cells to respond to immune complexes containing hemagglutinin (HA) and anti-HA antibodies or transformed allogeneic cells in the presence or absence of a therapeutic monoclonal antibody. Cytokine multiplex, RNA sequencing, supernatant transfer, Transwell, and cytokine-blocking/cytokine supplementation experiments showed that type I interferons released from PBMCs were primarily responsible for the influenza virus-induced enhancement of antibody-mediated NK cell functions. Importantly, the influenza virus-mediated increase in antibody-dependent NK cell functionality was mimicked by the type I interferon agonist poly(I·C). We conclude that the type I interferon secretion induced by influenza virus infection enhances the capacity of NK cells to mediate ADCC and that this pathway could be manipulated to alter the potency of anti-influenza virus therapies and vaccines.IMPORTANCE Protection from severe influenza may be assisted by antibodies that engage NK cells to kill infected cells through ADCC. Studies have primarily focused on antibodies that have ADCC activity, rather than the capacity of NK cells to become activated and mediate ADCC during an influenza virus infection. We found that type I interferon released in response to influenza virus infection primes NK cells to become highly reactive to anti-influenza virus ADCC antibodies. Enhancing the capacity of NK cells to mediate ADCC could assist in controlling influenza virus infections.


Asunto(s)
Anticuerpos Antivirales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Interferón Tipo I/metabolismo , Células Asesinas Naturales/inmunología , Células A549 , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular , Citocinas/inmunología , Humanos , Gripe Humana/virología
15.
J Virol ; 87(24): 13706-18, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109221

RESUMEN

Yearly vaccination with the trivalent inactivated influenza vaccine (TIV) is recommended, since current vaccines induce little cross neutralization to divergent influenza strains. Whether the TIV can induce antibody-dependent cellular cytotoxicity (ADCC) responses that can cross-recognize divergent influenza virus strains is unknown. We immunized 6 influenza-naive pigtail macaques twice with the 2011-2012 season TIV and then challenged the macaques, along with 12 control macaques, serially with H1N1 and H3N2 viruses. We measured ADCC responses in plasma to a panel of H1 and H3 hemagglutinin (HA) proteins and influenza virus-specific CD8 T cell (CTL) responses using a sensitive major histocompatibility complex (MHC) tetramer reagent. The TIV was weakly immunogenic and, although binding antibodies were detected by enzyme-linked immunosorbent assay (ELISA), did not induce detectable influenza virus-specific ADCC or CTL responses. The H1N1 challenge elicited robust ADCC to both homologous and heterologous H1 HA proteins, but not influenza virus HA proteins from different subtypes (H2 to H7). There was no anamnestic influenza virus-specific ADCC or CTL response in vaccinated animals. The subsequent H3N2 challenge did not induce or boost ADCC either to H1 HA proteins or to divergent H3 proteins but did boost CTL responses. ADCC or CTL responses were not induced by TIV vaccination in influenza-naive macaques. There was a marked difference in the ability of infection compared to that of vaccination to induce cross-reactive ADCC and CTL responses. Improved vaccination strategies are needed to induce broad-based ADCC immunity to influenza.


Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/genética , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Gripe Humana/virología , Macaca , Masculino , Vacunación
16.
Nat Commun ; 15(1): 3315, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632311

RESUMEN

This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-ß, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Linfocitos T CD8-positivos , Calidad de Vida , SARS-CoV-2 , Anticuerpos Antivirales
17.
EBioMedicine ; 92: 104585, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146404

RESUMEN

Currently approved COVID-19 vaccines administered parenterally induce robust systemic humoral and cellular responses. While highly effective against severe disease, there is reduced effectiveness of these vaccines in preventing breakthrough infection and/or onward transmission, likely due to poor immunity elicited at the respiratory mucosa. As such, there has been considerable interest in developing novel mucosal vaccines that engenders more localised immune responses to provide better protection and recall responses at the site of virus entry, in contrast to traditional vaccine approaches that focus on systemic immunity. In this review, we explore the adaptive components of mucosal immunity, evaluate epidemiological studies to dissect if mucosal immunity conferred by parenteral vaccination or respiratory infection drives differential efficacy against virus acquisition or transmission, discuss mucosal vaccines undergoing clinical trials and assess key challenges and prospects for mucosal vaccine development.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Membrana Mucosa , Vacunación , Inmunidad Mucosa , Anticuerpos Antivirales
18.
Adv Healthc Mater ; 12(17): e2202595, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36786027

RESUMEN

Employing monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface. Using this tunable system, ten antibodies targeting different immune cell subsets are screened, with targeting to Clec9a associated with higher serum antibody titers after immunization. Immune cell targeting using ferritin nanoparticles with anti-Clec9a antibodies drives concentrated deposition of antigens within germinal centers, boosting germinal center formation and robust antibody responses. However, the capacity to augment humoral immunity is antigen-dependent, with significant boosting observed for prototypic ovalbumin immunogens but reduced effectiveness with the SARS-CoV-2 RBD. This work provides a rapid platform for screening targeting antibodies, which will accelerate mechanistic insights into optimal delivery strategies for nanoparticle-based vaccines to maximize protective immunity.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas , Humanos , SARS-CoV-2 , Ferritinas , COVID-19/prevención & control , Antígenos , Anticuerpos Antivirales , Inmunidad Humoral , Nanopartículas/química
19.
Vaccine ; 41(33): 4888-4898, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37391311

RESUMEN

Countermeasures against Zika virus (ZIKV) epidemics are urgently needed. In this study we generated a ZIKV virus-like particle (VLP) based vaccine candidate and assessed the immunogenicity of these particles in mice. The ZIKV-VLPs were morphologically similar to ZIKV by electron microscopy and were recognized by anti-Flavivirus neutralising antibodies. We observed that a single dose of unadjuvanted ZIKV-VLPs, or inactivated ZIKV, generated an immune response that lasted over 6 months, but did not neutralize ZIKV infection of cells in vitro. However, when we co-administered the ZIKV VLPs with either Aluminium hydroxide (Alhydrogel®; Alum), AddaVax or Pam2Cys we observed that Alum was the most effective in a single dose regime, since it not only produced antibodies that neutralized the virus, but also generated a greater number of antigen-specific memory B cells. We additionally observed that the generation of the neutralising antibodies persisted for up to 6 months. Our results suggest that a single dose ZIKV VLPs could be a suitable single dose vaccine candidate for use in outbreak settings.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Adenoviridae
20.
Sci Adv ; 9(29): eadg5301, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478181

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following Omicron BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months after infection. Both BA.1 and BA.2 infections robustly boosted neutralization activity against the infecting strain while expanding breadth against BA.4, although neutralization activity was substantially reduced for the more recent XBB and BQ.1.1 strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modeling of neutralization titers predicts that protection from symptomatic reinfection against antigenically similar strains will be durable but is undermined by new emerging strains with further neutralization escape.


Asunto(s)
Anticuerpos Neutralizantes , Infección Irruptiva , COVID-19 , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda