Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Eur J Immunol ; 53(10): e2350390, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37525585

RESUMEN

Therapeutic strategies that enhance regulatory T (Treg) cell proliferation or suppressive function hold promise for the treatment of autoimmune and inflammatory diseases. We previously reported that the topical application of the vitamin D3 analog MC903 systemically expands Treg cells by stimulating the production of thymic stromal lymphopoietin (TSLP) from the skin. Using mice lacking TSLP receptor expression by dendritic cells (DCs), we hereby show that TSLP receptor signaling in DCs is required for this Treg expansion in vivo. Topical MC903 treatment of ear skin selectively increased the number of migratory DCs in skin-draining lymph nodes (LNs) and upregulated their expression of co-stimulatory molecules. Accordingly, DCs isolated from skin-draining LNs but not mesenteric LNs or spleen of MC903-treated mice showed an enhanced ability to promote Treg proliferation, which was driven by co-stimulatory signals through CD80/CD86 and OX40 ligand. Among the DC subsets in the skin-draining LNs of MC903-treated mice, migratory XCR1- CD11b+ type 2 and XCR1- CD11b- double negative conventional DCs promoted Treg expansion. Together, these data demonstrate that vitamin D3 stimulation of skin induces TSLP expression, which stimulates skin migratory DCs to expand Treg cells. Thus, topical MC903 treatment could represent a convenient strategy to treat inflammatory disorders by engaging this pathway.


Asunto(s)
Linfocitos T Reguladores , Linfopoyetina del Estroma Tímico , Animales , Ratones , Colecalciferol/metabolismo , Citocinas/metabolismo , Células Dendríticas
2.
Cell Immunol ; 393-394: 104780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37918056

RESUMEN

Allergic airway diseases are caused by inappropriate immune responses directed against inhaled environmental antigens. We previously reported that the inhibition of diacylglycerol (DAG) kinaseζ (DGKζ),an enzyme that terminates DAG-mediated signaling,protects against T cell-mediated allergic airway inflammation by blocking Th2 cell differentiation.In this study, we tested whether DGKζ deficiency also affects allergic airway disease mediated by type 2 innate lymphoid cells (ILC2)s. DGKζ-deficient mice displayed diminished ILC2 function and reduced papain-induced airway inflammation compared to wildtype mice. Unexpectedly, however, mice with hematopoietic cell-specific deletion ofDGKζ displayed intact airway inflammation upon papain challenge. Rather, bone marrow chimera studies revealed thatDGKζ deficiency in the non-hematopoietic compartment was responsible for the reduction in papain-induced airway inflammation. These data suggest that DGK might represent a novel therapeutic target not only for T cell-dependent but also ILC2-dependent allergic airway inflammation by affecting non-hematopoietic cells.


Asunto(s)
Hipersensibilidad , Inmunidad Innata , Animales , Ratones , Papaína , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Linfocitos , Inflamación
3.
Inflamm Res ; 72(3): 651-667, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36723628

RESUMEN

OBJECTIVE AND METHODS: IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33. RESULTS: A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia. CONCLUSION: IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.


Asunto(s)
Eosinofilia , Histidina Descarboxilasa , Ratones , Animales , Histamina , Interleucina-33 , Interleucina-5 , Citocinas , Eosinofilia/inducido químicamente , Proteínas Proto-Oncogénicas c-kit
4.
Biol Pharm Bull ; 46(3): 432-439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858572

RESUMEN

Anaphylaxis is a serious allergic or hypersensitivity reaction with a sudden onset that can be life-threatening or fatal. Previous studies have highlighted two pathways of anaphylaxis in mice. One is the classical immunoglobulin E (IgE)-mediated pathway that involves mast cells and histamine. The other is an alternative IgG-mediated pathway that involves basophils, monocytes/macrophages, neutrophils, and the platelet-activating factor (PAF). However, little is known about the mechanism by which complement anaphylatoxins contribute to the induction of anaphylaxis. Infection is a cofactor that potentially amplifies the risk of anaphylaxis. Here, we showed that priming with a lipopolysaccharide (LPS), which mimics bacterial infection, exacerbates anaphylatoxin C5a-induced anaphylaxis in mice. LPS plus C5a-induced anaphylaxis was mediated by histamine and lipid mediators, especially PAF. Cell depletion experiments demonstrated that LPS plus C5a-induced anaphylaxis depended on monocytes/macrophages, basophils, and neutrophils. These results suggest that C5a is a potent inducer of anaphylaxis in bacterial infections. Remarkably, the molecular and cellular mediators of LPS plus C5a-induced anaphylaxis are mostly shared with IgE- and IgG-mediated anaphylaxis. Therefore, combined inhibition of histamine and PAF may be beneficial as a second-line treatment for severe anaphylaxis.


Asunto(s)
Anafilaxia , Animales , Ratones , Lipopolisacáridos , Histamina , Anafilatoxinas , Inmunoglobulina E , Inmunoglobulina G
5.
Inflamm Res ; 71(12): 1603-1617, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36308538

RESUMEN

OBJECTIVE AND METHODS: Nitrogen-containing bisphosphonates (NBPs, anti-bone-resorptive agents) have inflammatory side-effects. Alendronate (Ale, an NBP) intradermally injected into mouse ear-pinnae together with LPS (bacterial cell-wall component) induces augmented ear-swelling that depends on IL-1 and neutrophils. Using this model, we examined histamine's involvement in Ale + LPS-induced inflammation. RESULTS: Ale increased histamine in ear-pinnae by inducing histidine decarboxylase (HDC). This induction was augmented by LPS. In HDC-deficient mice, such augmented ear-swelling was not induced. At peak-swelling, 74.5% of HDC-expressing cells were neutrophils and only 0.2% were mast cells (MCs). The augmented swelling was markedly reduced by a histamine H4-receptor (H4R) antagonist, but not by an H1R antagonist. In MC-deficient mice, unexpectedly, Ale + LPS induced prolonged ear-swelling that was augmented and more persistent than in normal mice. MCs highly expressed H4Rs and produced MCP-1(inflammatory cytokine that recruits macrophages) and IL-10 (anti-inflammatory cytokine) in response to an H4R agonist. CONCLUSION: Histamine produced by HDC-induction mainly in infiltrated neutrophils stimulates H4Rs, leading to augmented Ale + LPS-induced ear-swelling via MCP-1 production by MCs. Since MCP-1 is produced by other cells, too, the contribution of MCs and their H4Rs to augmented ear-swelling is partial. In the later phase of the swelling, MCs may be anti-inflammatory via IL-10 production.


Asunto(s)
Histamina , Receptores Histamínicos H4 , Animales , Ratones , Antiinflamatorios , Difosfonatos/efectos adversos , Histamina/metabolismo , Histidina Descarboxilasa/genética , Inflamación/inducido químicamente , Interleucina-10/genética , Lipopolisacáridos , Ratones Endogámicos BALB C , Nitrógeno/efectos adversos , Receptores Histamínicos H4/metabolismo
6.
J Bacteriol ; 200(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29866810

RESUMEN

This study shows that sequential introduction of drug resistance mutations substantially increased enzyme production in Paenibacillus agaridevorans The triple mutant YT478 (rsmG Gln225→stop codon, rpsL K56R, and rpoB R485H), generated by screening for resistance to streptomycin and rifampin, expressed a 1,100-fold-larger amount of the extracellular enzyme cycloisomaltooligosaccharide glucanotransferase (CITase) than the wild-type strain. These mutants were characterized by higher intracellular S-adenosylmethionine concentrations during exponential phase and enhanced protein synthesis activity during stationary phase. Surprisingly, the maximal expression of CITase mRNA was similar in the wild-type and triple mutant strains, but the mutant showed greater CITase mRNA expression throughout the growth curve, resulting in enzyme overproduction. A metabolome analysis showed that the triple mutant YT478 had higher levels of nucleic acids and glycolysis metabolites than the wild type, indicating that YT478 mutant cells were activated. The production of CITase by the triple mutant was further enhanced by introducing a mutation conferring resistance to the rare earth element, scandium. This combined drug resistance mutation method also effectively enhanced the production of amylases, proteases, and agarases by P. agaridevorans and Streptomyces coelicolor This method also activated the silent or weak expression of the P. agaridevorans CITase gene, as shown by comparisons of the CITase gene loci of P. agaridevorans T-3040 and another cycloisomaltooligosaccharide-producing bacterium, Paenibacillus sp. strain 598K. The simplicity and wide applicability of this method should facilitate not only industrial enzyme production but also the identification of dormant enzymes by activating the expression of silent or weakly expressed genes.IMPORTANCE Enzyme use has become more widespread in industry. This study evaluated the molecular basis and effectiveness of ribosome engineering in markedly enhancing enzyme production (>1,000-fold). This method, due to its simplicity, wide applicability, and scalability for large-scale production, should facilitate not only industrial enzyme production but also the identification of novel enzymes, because microorganisms contain many silent or weakly expressed genes which encode novel antibiotics or enzymes. Furthermore, this study provides a new mechanism for strain improvement, with a consistent rather than transient high expression of the key gene(s) involved in enzyme production.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Glucosiltransferasas/biosíntesis , Paenibacillus/efectos de los fármacos , Paenibacillus/enzimología , Biosíntesis de Proteínas/efectos de los fármacos , Antibacterianos/farmacología , Ingeniería Genética , Glucosiltransferasas/genética , Metaboloma , Mutación , Paenibacillus/genética , Rifampin/farmacología , Estreptomicina/farmacología
7.
Eur J Immunol ; 47(2): 305-313, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861804

RESUMEN

Dendritic cells (DCs) in lymphoid and non-lymphoid tissues are professional antigen-presenting cells that are essential for effective immunity and tolerance. However, the presence and characteristics of DCs in steady-state salivary glands (SGs) currently remain unknown. We herein identified CD64- CD11c+ classical DCs (cDCs) as well as CD64+ macrophages among CD45+ MHC class II+ antigen-presenting cells in steady-state murine SGs. SG cDCs were divided into CD103+ CD11b- and CD103- CD11b+ cDCs. CD103+ CD11b- cDCs expressed XCR1, CLEC9A, and interferon regulatory factor 8, whereas CD103- CD11b+ cDCs strongly expressed CD172a. Both cDC subsets in SGs markedly expanded in response to the Flt3 ligand (Flt3L), were replenished by bone marrow-derived precursors, and differentiated from common DC precursors, but not monocytes. Furthermore, ovalbumin-pulsed SG CD103+ CD11b- cDCs induced the proliferation of naïve ovalbumin-specific CD8+ T cells and production of interferon-γ from proliferating T cells. SG CD103+ CD11b- cDCs expanded by Flt3L in vivo exhibited the same properties. These results indicate that bona fide cDCs reside in steady-state murine SGs and cDCs with the CD103+ CD11b- phenotype possess antigen cross-presenting capacity. Moreover, Flt3L enhances protective immunity by expanding cDCs. Taken together, SG cDCs might play an important role in maintaining immune homeostasis in the tissues.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/fisiología , Macrófagos/fisiología , Glándulas Salivales/citología , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Reactividad Cruzada , Femenino , Cadenas alfa de Integrinas/metabolismo , Interferón gamma/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Receptores de IgG/metabolismo , Tirosina Quinasa 3 Similar a fms/inmunología
8.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R90-R103, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513560

RESUMEN

Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/ß-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1ß administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.


Asunto(s)
Proliferación Celular , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Toxinas Biológicas , Animales , Modelos Animales de Enfermedad , Interleucina-1alfa/deficiencia , Interleucina-1alfa/genética , Interleucina-1beta/deficiencia , Interleucina-1beta/genética , Masculino , Ratones Endogámicos BALB C , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Nicho de Células Madre , Factores de Tiempo
9.
Tohoku J Exp Med ; 244(1): 15-24, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29311489

RESUMEN

Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.


Asunto(s)
Tejido Adiposo/patología , Desarrollo de Músculos , Lesiones del Manguito de los Rotadores/patología , Manguito de los Rotadores/patología , Células Satélite del Músculo Esquelético/patología , Adipogénesis , Anciano , Separación Celular , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/patología , Lesiones del Manguito de los Rotadores/genética , Células Satélite del Músculo Esquelético/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-27919888

RESUMEN

Comparative genome sequencing analysis of a lincomycin-resistant strain of Streptomyces coelicolor A3(2) and the wild-type strain identified a novel mutation conferring a high level of lincomycin resistance. Surprisingly, the new mutation was an in-frame DNA deletion in the genes SCO4597 and SCO4598, resulting in formation of the hybrid gene linR. SCO4597 and SCO4598 encode two histidine kinases, which together with SCO4596, encoding a response regulator, constitute a unique two-component system. Sequence analysis indicated that these three genes and their arrangement patterns are ubiquitous among all Streptomyces genomes sequenced to date, suggesting these genes play important regulatory roles. Gene replacement showed that this mutation was responsible for the high level of lincomycin resistance, the overproduction of the antibiotic actinorhodin, and the enhanced morphological differentiation of this strain. Moreover, heterologous expression of the hybrid gene linR in Escherichia coli conferred resistance to lincomycin in this organism. Introduction of the hybrid gene linR in various Streptomyces strains by gene engineering technology may widely activate and/or enhance antibiotic production.


Asunto(s)
Antibacterianos/farmacología , Lincomicina/farmacología , Streptomyces coelicolor/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Mutación/genética
11.
J Autoimmun ; 79: 39-52, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28126203

RESUMEN

Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive function and are critical for limiting inappropriate activation of T cells. Hence, the expansion of Tregs is an attractive strategy for the treatment of autoimmune diseases. Here, we demonstrate that the skin possesses the remarkable capacity to systemically expand Treg numbers by producing thymic stromal lymphopoietin (TSLP) in response to vitamin D receptor stimulation. An ∼2-fold increase in the proportion and absolute number of Tregs was observed in mice treated topically but not systemically with the Vitamin D3 analog MC903. This expansion of Tregs was dependent on TSLP receptor signaling but not on VDR signaling in hematopoietic cells. However, TSLP receptor expression by Tregs was not required for their proliferation. Rather, skin-derived TSLP promoted Treg expansion through dendritic cells. Importantly, treatment of skin with MC903 significantly lowered the incidence of autoimmune diabetes in non-obese diabetic mice and attenuated disease score in experimental autoimmune encephalomyelitis. Together, these data demonstrate that the skin has the remarkable potential to control systemic immune responses and that Vitamin D-mediated stimulation of skin could serve as a novel strategy to therapeutically modulate the systemic immune system for the treatment of autoimmunity.


Asunto(s)
Citocinas/metabolismo , Piel/inmunología , Piel/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Biomarcadores , Colecalciferol/análogos & derivados , Colecalciferol/farmacología , Citocinas/farmacología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfopoyetina del Estroma Tímico
12.
Appl Microbiol Biotechnol ; 101(11): 4417-4431, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28293709

RESUMEN

Although transcriptional activation of pathwayspecific positive regulatory genes and/or biosynthetic genes is primarily important for enhancing secondary metabolite production, reinforcement of substrate supply, as represented by primary metabolites, is also effective. For example, partial inhibition of fatty acid synthesis with ARC2 (an analog of triclosan) was found to enhance polyketide antibiotic production. Here, we demonstrate that this approach is effective even for industrial high-producing strains, for example enhancing salinomycin production by 40%, reaching 30.4 g/l of salinomycin in an industrial Streptomyces albus strain. We also hypothesized that a similar approach would be applicable to another important antibiotic group, nonribosomal peptide (NRP) antibiotics. We therefore attempted to partially inhibit protein synthesis by using ribosome-targeting drugs at subinhibitory concentrations (1/50∼1/2 of MICs), which may result in the preferential recruitment of intracellular amino acids to the biosynthesis of NRP antibiotics rather than to protein synthesis. Among the ribosome-targeting drugs examined, chloramphenicol at subinhibitory concentrations was most effective at enhancing the production by Streptomyces of NRP antibiotics such as actinomycin, calcium-dependent antibiotic (CDA), and piperidamycin, often resulting in an almost 2-fold increase in antibiotic production. Chloramphenicol activated biosynthetic genes at the transcriptional level and increased amino acid pool sizes 1.5- to 6-fold, enhancing the production of actinomycin and CDA. This "metabolic perturbation" approach using subinhibitory concentrations of ribosome-targeting drugs is a rational method of enhancing NRP antibiotic production, being especially effective in transcriptionally activated (e.g., rpoB mutant) strains. Because this approach does not require prior genetic information, it may be widely applicable for enhancing bacterial production of NRP antibiotics and bioactive peptides.


Asunto(s)
Antibacterianos/biosíntesis , Microbiología Industrial/métodos , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Policétidos/metabolismo , Streptomyces/metabolismo , Triclosán/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloranfenicol/farmacología , Regulación Bacteriana de la Expresión Génica , Lincomicina/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos/química , Piranos/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Streptomyces/efectos de los fármacos , Streptomyces/genética
13.
Biosci Biotechnol Biochem ; 81(8): 1636-1641, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28532245

RESUMEN

Ribosome engineering has been widely utilized for strain improvement, especially for the activation of bacterial secondary metabolism. This study assessed ribosome engineering technology to modulate primary metabolism, taking vitamin B12 production as a representative example. The introduction into Propionibacterium shermanii of mutations conferring resistance to rifampicin, gentamicin, and erythromycin, respectively, increased per cell production (µg/L/OD600) of vitamin B12 5.2-fold, although net production (µg/L) was unchanged, as the cell mass of the mutants was reduced. Real-time qPCR analysis demonstrated that the genes involved in vitamin B12 fermentation by P. shermanii were activated at the transcriptional level in the drug-resistant mutants, providing a mechanism for the higher yields of vitamin B12 by the mutants. These results demonstrate the efficacy of ribosome engineering for the production of not only secondary metabolites but of industrially important primary metabolites.


Asunto(s)
Transferasas Alquil y Aril/genética , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Propionibacterium/genética , Ribosomas/genética , Vitamina B 12/biosíntesis , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Fermentación , Expresión Génica , Ingeniería Genética , Gentamicinas/farmacología , Mutación , Propionibacterium/efectos de los fármacos , Propionibacterium/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Rifampin/farmacología , Análisis de Secuencia de ADN , Vitamina B 12/genética
14.
Antimicrob Agents Chemother ; 59(12): 7799-804, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26369962

RESUMEN

Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s).


Asunto(s)
Antibacterianos/biosíntesis , Bacillus/genética , Bacillus/metabolismo , Farmacorresistencia Bacteriana/genética , Mutación/genética , Antibacterianos/química , Antibacterianos/farmacología , Bacillus/crecimiento & desarrollo , Medios de Cultivo , Dipéptidos/biosíntesis , Dipéptidos/farmacología , Glucosidasas/genética , Proteínas Ribosómicas/genética , Rifampin/farmacología
15.
Appl Environ Microbiol ; 81(11): 3869-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25819962

RESUMEN

Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and ß subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.


Asunto(s)
Antibacterianos/metabolismo , Lincomicina/metabolismo , Metabolismo Secundario/efectos de los fármacos , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pigmentos Biológicos/metabolismo , Análisis Espectral
16.
J Bacteriol ; 196(8): 1514-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509311

RESUMEN

Certain Str(r) mutations that confer low-level streptomycin resistance result in the overproduction of antibiotics by Bacillus subtilis. Using comparative genome-sequencing analysis, we successfully identified this novel mutation in B. subtilis as being located in the mthA gene, which encodes S-adenosylhomocysteine/methylthioadenosine nucleosidase, an enzyme involved in the S-adenosylmethionine (SAM)-recycling pathways. Transformation experiments showed that this mthA mutation was responsible for the acquisition of low-level streptomycin resistance and overproduction of bacilysin. The mthA mutant had an elevated level of intracellular SAM, apparently acquired by arresting SAM-recycling pathways. This increase in the SAM level was directly responsible for bacilysin overproduction, as confirmed by forced expression of the metK gene encoding SAM synthetase. The mthA mutation fully exerted its effect on antibiotic overproduction in the genetic background of rel(+) but not the rel mutant, as demonstrated using an mthA relA double mutant. Strikingly, the mthA mutation activated, at the transcription level, even the dormant ability to produce another antibiotic, neotrehalosadiamine, at concentrations of 150 to 200 µg/ml, an antibiotic not produced (<1 µg/ml) by the wild-type strain. These findings establish the significance of SAM in initiating bacterial secondary metabolism. They also suggest a feasible methodology to enhance or activate antibiotic production, by introducing either the rsmG mutation to Streptomyces or the mthA mutation to eubacteria, since many eubacteria have mthA homologues.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Mutación , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , S-Adenosilmetionina/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/genética , Dipéptidos/biosíntesis , Farmacorresistencia Bacteriana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estreptomicina/farmacología
17.
J Ind Microbiol Biotechnol ; 41(2): 403-14, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24127067

RESUMEN

Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often "silent" under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Metales de Tierras Raras/farmacología , Mutación , Activación Transcripcional , Bacterias/genética , Bacterias/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Metabolismo Secundario/genética
18.
J Bacteriol ; 195(13): 2959-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23603745

RESUMEN

A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.


Asunto(s)
Actinobacteria/efectos de los fármacos , Actinobacteria/genética , Proteínas Bacterianas/genética , Familia de Multigenes/genética , Rifampin/farmacología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Mutación
19.
Antimicrob Agents Chemother ; 57(4): 1948-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23335737

RESUMEN

Bacillus subtilis contains 10 rRNA (rrn) operons. We found that rRNA operon-engineered B. subtilis strain RIK543, with only the rrnO operon, is specifically hypersensitive to RNA polymerase inhibitors such as rifamycin SV and rifampin (80-fold and 20-fold, respectively). In pilot screening experiments, we found actinomycete isolates successfully at an incidence of 1.9% (18/945) that produced antibacterials that were detectable only with RIK543 as the test organism. Strain RIK543 may be a feasible test organism for the discovery of novel RNA polymerase inhibitors.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Operón de ARNr/genética
20.
Tohoku J Exp Med ; 230(3): 141-9, 2013 07.
Artículo en Inglés | MEDLINE | ID: mdl-23822921

RESUMEN

Diseases involving enhanced bone-resorption (e.g., osteoporosis) are widely treated with bisphosphonates (BPs). BPs are of two types: the nitrogen-containing BPs (N-BPs) and the non-nitrogen-containing BPs (non-N-BPs). N-BPs have much stronger anti-bone-resorptive effects than non-N-BPs, and N-BPs can exert inflammatory and necrotic effects, including osteonecrosis of jawbones. Minodronate, an N-BP, was approved in 2009 in Japan for osteoporosis. Its anti-bone-resorptive effect is comparable to that of zoledronate, the N-BP with the strongest anti- bone-resorptive effect and the highest risk of side effects yet reported. Unlike other N-BPs, minodronate has an analgesic effect, and no serious side effects have been documented. Here, to examine whether minodronate lacks inflammatory and/or necrotic effects, we used mice (since the N-BPs tested so far induce such effects in mice with potencies that parallel those reported in humans). To facilitate comparison with previous studies, we gave a single systemic (intraperitoneal) or local (ear pinna) injection of minodronate (or another N-BP). We measured the systemic responses (weight of thoracic exudate, number of inflammatory cells in the peritoneal cavity, and spleen weight) or local responses (area of inflamed skin and incidence of necrosis). Anti-bone-resorptive effects were evaluated by X-ray analysis of tibias following intraperitoneal injection. Minodronate's anti-bone-resorptive effect and its inflammatory and necrotic effects were as great as, or greater than those of zoledronate. Moreover, in cultured human periodontal ligament cells, the cytotoxicity of minodronate was significantly greater than that of zoledronate. These results suggest that caution may be needed with minodronate in clinical use, as with other N-BPs.


Asunto(s)
Difosfonatos/efectos adversos , Difosfonatos/farmacología , Imidazoles/efectos adversos , Imidazoles/farmacología , Osteonecrosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Análisis de Varianza , Animales , Difosfonatos/administración & dosificación , Difosfonatos/química , Femenino , Humanos , Imidazoles/administración & dosificación , Imidazoles/química , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Ligamento Periodontal/efectos de los fármacos , Radiografía , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda