Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032197

RESUMEN

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Anciano , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/inmunología , Proteínas Virales de Fusión , Vacunas Virales/inmunología
2.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37837036

RESUMEN

Pumps are one of the core components of drilling equipment, and their fault diagnosis is of great significance. The data-driven approach has made remarkable achievements in the field of pump fault diagnosis; however, most of them are easily affected by complex background conditions and usually suffer from data scarcity problems in real-industrial scenarios, which limit their application in practical engineering. To overcome the above shortcoming, a novel framework for a model named Hyperparameter Optimization Multiple-Signal Fusion Transfer Convolution Neural Network is proposed in this paper. A convolutional neural network model based on transfer learning is built to promote well-learned knowledge transfer over different background conditions, improve robustness, and generalize the model to cross-domain diagnosis tasks. The multi-signal fusion strategy is involved in capturing system state information for establishing the mapping relationship between the raw signal and fault pattern by integrating the multi-physical signal with the weight allocation protocol. The hyperparameter optimization method is explored in conjunction with the transfer-based model by integrating Grid Search with the Gradient Descent algorithm for further improvement of diagnosis performance. Results show that the proposed model can effectively realize the fault diagnosis of pumps under different background conditions, achieving 95% accuracy.

3.
PLoS Pathog ; 16(8): e1008736, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32745149

RESUMEN

Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3-25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3-25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3-25 Fab in complex with the peptide epitope revealed the molecular determinants of 3-25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3-25 Fab in complex with de-glycosylated postfusion gB showed that 3-25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3-25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3-25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3-25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Epítopos/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencias de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Secuencia Conservada , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Epítopos/química , Epítopos/genética , Humanos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del Virus
4.
J Infect Dis ; 223(11): 2001-2012, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33031517

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) can cause congenital infection and is the leading cause of nongenetic newborn disabilities. V160, a conditionally replication-defective virus, is an investigational vaccine under evaluation for prevention of congenital CMV. The vaccine was well tolerated and induced both humoral and cellular immunity in CMV-seronegative trial participants. T-cell-mediated immunity is important for immune control of CMV. Here we describe efforts to understand the quality attributes of the T-cell responses induced by vaccination. METHODS: Using multicolor flow cytometry, we analyzed vaccine-induced T cells for memory phenotype, antigen specificity, cytokine profiles, and cytolytic potential. Moreover, antigen-specific T cells were sorted from 4 participants, and next-generation sequencing was used to trace clonal lineage development during the course of vaccination using T-cell receptor ß-chain sequences as identifiers. RESULTS: The results demonstrated that vaccination elicited polyfunctional CD4 and CD8 T cells to 2 dominant antigens, pp65 and IE1, with a predominantly effector phenotype. Analysis of T-cell receptor repertoires showed polyclonal expansion of pp65- and IE1-specific T cells after vaccination. CONCLUSION: V160 induced a genetically diverse and polyfunctional T-cell response and the data support further clinical development of V160 for prevention of CMV infection and congenital transmission. CLINICAL TRIALS REGISTRATION: NCT01986010.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Inmunidad Celular , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Humanos , Vacunación
5.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511385

RESUMEN

Human cytomegalovirus (HCMV) can cause congenital infections, which are a leading cause of childhood disabilities. Since the rate of maternal-fetal transmission is much lower in naturally infected (HCMV-seropositive) women, we hypothesize that a vaccine candidate capable of eliciting immune responses analogous to those of HCMV-seropositive subjects may confer protection against congenital HCMV. We have previously described a replication-defective virus vaccine based on strain AD169 (D. Wang, D. C. Freed, X. He, F. Li, et al., Sci Transl Med 8:362ra145, 2016, https://doi.org/10.1126/scitranslmed.aaf9387). The vaccine, named V160, has been shown to be safe and immunogenic in HCMV-seronegative human subjects, eliciting both humoral and cellular immune responses (S. P. Adler, S. E. Starr, S. A. Plotkin, S. H. Hempfling, et al., J Infect Dis 220:411-419, 2019, https://doi.org/10.1093/infdis/171.1.26). Here, we further showed that sera from V160-immunized HCMV-seronegative subjects have attributes similar in quality to those from seropositive subjects, including high-avidity antibodies to viral antigens, coverage against a panel of genetically distinct clinical isolates, and protection against viral infection in diverse types of human cells in culture. More importantly, vaccination appeared efficient in priming the human immune system, inducing memory B cells in six V160 recipients at frequencies comparable to those of three HCMV-seropositive subjects. Our results demonstrate the ability of V160 to induce robust and durable humoral memory responses to HCMV, justifying further clinical evaluation of the vaccine against congenital HCMV.IMPORTANCEIn utero HCMV infection can lead to miscarriage or childhood disabilities, and an effective vaccine is urgently needed. Since children born to women who are seropositive prior to pregnancy are less likely to be affected by congenital HCMV infection, it has been hypothesized that a vaccine capable of inducing an immune response resembling the responses in HCMV-seropositive women may be effective. We previously described a replication-defective virus vaccine that has been demonstrated safe and immunogenic in HCMV-seronegative subjects. Here, we conducted additional analyses to show that the vaccine can induce antibodies with functional attributes similar to those from HCMV-seropositive subjects. Importantly, vaccination can induce long-lived memory B cells at frequencies comparable to those seen in HCMV-seropositive subjects. We conclude that this vaccine is a promising candidate that warrants further clinical evaluation for prevention of congenital HCMV.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Humoral/inmunología , Inmunización , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , Línea Celular , Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/virología , Método Doble Ciego , Femenino , Humanos , Inmunidad Celular , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Masculino , Persona de Mediana Edad , Estados Unidos , Vacunación , Replicación Viral , Adulto Joven
6.
Soft Matter ; 15(40): 8092-8101, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31583392

RESUMEN

The scaffold is one of the most important components in tissue engineering. There are a lot of natural or synthetic materials applied for the fabrication of scaffolds. Among them, cellulose nanofibril (CNF) is an important natural polymer with characteristics of superior biocompatibility, notable nanostructure effect and excellent hydrophilia, which make it qualified for serving as a raw material of scaffolds. In this paper, polyethylene glycol diacrylate (PEGDA) was mixed with CNF at different content ratios, which were 0%, 0.35%, 0.7%, 1.05% and 1.4% (m/v). Furthermore, the visible light photoinitiator (eosin Y + TEA + NVP) was first added to this mixture solution to form a new kind of bio-resin. A two-step method including stereolithography and freeze-drying is put forward to fabricate a new aerogel-wet hydrogel scaffold. Scaffolds were fabricated by using a self-built stereolithography platform and the mechanical properties, printability and biocompatibility of the hydrogel scaffolds were investigated thoroughly. The original hydrogel scaffold was fabricated through stereolithography, where CNFs were applied to regulate the mechanical properties of the hydrogel and the printability of the bio-resin. After the freeze-drying process, the original hydrogel was transformed into the aerogel-wet hydrogel whose compressive modulus is reduced by 20%. Furthermore, the surface structure of the hydrogel scaffold is modified to provide a better environment for adhesion and growth of BMSc.

7.
Artículo en Inglés | MEDLINE | ID: mdl-29038280

RESUMEN

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Complejo CD3/inmunología , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/inmunología , Traslado Adoptivo , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Especificidad de Anticuerpos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
8.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077654

RESUMEN

Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Línea Celular , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Mapeo Epitopo , Humanos , Macaca mulatta , Unión Proteica , Conejos , Vacunación , Vacunas Virales/administración & dosificación , Internalización del Virus
9.
BMC Infect Dis ; 18(1): 613, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30509199

RESUMEN

BACKGROUND: Community-acquired pneumonia is a leading infectious cause of hospitalization. A few vaccines exist to prevent pneumococcal disease in adults, including a pneumococcal polysaccharide unconjugated vaccine and a protein conjugated polysaccharide vaccine. Previous studies on the human immune response to the unconjugated vaccine showed that the vaccine boosted the existing memory B cells. In the present study, we investigated the human B cell immune response following pneumococcal polysaccharide conjugate vaccination. METHODS: Plasmablast B cells from a pneumococcal polysaccharide conjugate vaccinee were isolated and cloned for analysis. In response to primary vaccination, identical sequences from the plasmablast-derived antibodies were identified from multiple B cells, demonstrating evidence of clonal expansion. We evaluated the binding specificity of these human monoclonal antibodies in immunoassays, and tested there in vitro function in a multiplexed opsonophagocytic assay (MOPA). To characterize the plasmablast B cell response to the pneumococcal conjugated vaccine, the germline usage and the variable region somatic hypermutations on these antibodies were analyzed. Furthermore, a serotype 4 polysaccharide-specific antibody was tested in an animal challenge study to explore the in vivo functional activity. RESULTS: The data suggests that the pneumococcal polysaccharide conjugate vaccine boosted memory B cell responses, likely derived from previous pneumococcal exposure. The majority of the plasmablast-derived antibodies contained higher numbers of variable region somatic hypermutations and evidence for selection, as demonstrated by replacement to silent ratio's (R/S) greater than 2.9 in the complementarity-determining regions (CDRs). In addition, we found that VH3/JH4 was the predominant germline sequence used in these polysaccharide-specific B cells. All of the tested antibodies demonstrated narrow polysaccharide specificity in ELISA binding, and demonstrated functional opsonophagocytic killing (OPK) activity in the MOPA assay. The in-vivo animal challenge study showed that the tested serotype 4 polysaccharide-specific antibody demonstrated a potent protective effect when administered prior to bacterial challenge. CONCLUSIONS: The findings on the pneumococcal polysaccharide conjugate vaccine responses from a vaccinated subject reported in this study are similar to previously published data on the pneumococcal polysaccharide unconjugated vaccine responses. In both vaccine regimens, the pre-existing human memory B cells were expanded after vaccination with preferential use of the germline VH3/JH4 genes.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Linfocitos B/inmunología , Memoria Inmunológica , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/uso terapéutico , Hipermutación Somática de Inmunoglobulina , Adulto , Animales , Anticuerpos Antibacterianos/inmunología , Linfocitos B/metabolismo , Células Cultivadas , Femenino , Reordenamiento Génico de Linfocito B/genética , Reordenamiento Génico de Linfocito B/inmunología , Humanos , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/inmunología , Serogrupo , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Streptococcus pneumoniae/inmunología , Vacunación , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico
10.
Proc Natl Acad Sci U S A ; 110(51): E4997-5005, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297878

RESUMEN

Human cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies. Receptor-mediated viral entry to endothelial/epithelial cells requires a glycoprotein H (gH) complex comprising five viral proteins (gH, gL, UL128, UL130, and UL131). This gH complex is notably missing from HCMV laboratory strains as well as HCMV vaccines previously evaluated in the clinic. To support a unique vaccine concept based on the pentameric gH complex, we established a panel of 45 monoclonal antibodies (mAbs) from a rabbit immunized with an experimental vaccine virus in which the expression of the pentameric gH complex was restored. Over one-half (25 of 45) of the mAbs have neutralizing activity. Interestingly, affinity for an antibody to bind virions was not correlated with its ability to neutralize the virus. Genetic analysis of the 45 mAbs based on their heavy- and light-chain sequences identified at least 26 B-cell linage groups characterized by distinct binding or neutralizing properties. Moreover, neutralizing antibodies possessed longer complementarity-determining region 3 for both heavy and light chains than those with no neutralizing activity. Importantly, potent neutralizing mAbs reacted to the pentameric gH complex but not to gB. Thus, the pentameric gH complex is the primary target for antiviral antibodies by vaccination.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Complejos Multiproteicos/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/genética , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Complejos Multiproteicos/genética , Conejos , Proteínas del Envoltorio Viral/genética
11.
Vaccines (Basel) ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793720

RESUMEN

Multivalent pneumococcal vaccines have been developed successfully to combat invasive pneumococcal diseases (IPD) and reduce the associated healthcare burden. These vaccines employ pneumococcal capsular polysaccharides (PnPs), either conjugated or unconjugated, as antigens to provide serotype-specific protection. Pneumococcal capsular polysaccharides used for vaccine often contain residual levels of cell wall polysaccharides (C-Ps), which can generate a non-serotype specific immune response and complicate the desired serotype-specific immunity. Therefore, the C-P level in a pneumococcal vaccine needs to be controlled in the vaccine process and the anti C-P responses need to be dialed out in clinical assays. Currently, two types of cell-wall polysaccharide structures have been identified: a mono-phosphocholine substituted cell-wall polysaccharide C-Ps1 and a di-phosphocholine substituted C-Ps2 structure. In our effort to develop a next-generation novel pneumococcal conjugate vaccine (PCV), we have generated a monoclonal antibody (mAb) specific to cell-wall polysaccharide C-Ps2 structure. An antibody-enhanced HPLC assay (AE-HPLC) has been established for serotype-specific quantification of pneumococcal polysaccharides in our lab. With the new anti C-Ps2 mAb, we herein extend the AE-HPLC assay to the quantification and identification of C-Ps2 species in pneumococcal polysaccharides used for vaccines.

12.
J Biomed Mater Res A ; 111(4): 502-513, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345885

RESUMEN

Tissue engineering (TE) scaffolds with appropriate Poisson's ratio (PR) are suitable for mimicking the environment of native tissues on which cells could survive and thrive better. Herein, cellular structured scaffolds are made by a new composite poly(ethylene glycol) diacrylate/cellulose nanofibril aerogel, with prototypes of the hexagonal, reentrant, and semireentrant models. Scaffolds with different geometry parameters (l, t, α) are designed and simulated by COMSOL to enable precise regulation of their PR. Then, nine groups of scaffolds with different PRs ranging from -0.5 to 0.85 are designed by adjusting geometry parameters and fabricated by using stereolithography and freeze-drying techniques. Subsequently, bone marrow mesenchymal stem cells (BMSc) are cultured on these scaffolds for 21 days, during which CCK8 assay, fluorescence microscope observation, and real-time polymerase chain reaction experiments are performed to characterize the proliferation and differentiation of BMSc. The results reflect that the scaffolds with different PR can provide various stress environments for cells, and the scaffold with zero PR is the most suitable for BMSc differentiating into chondrocytes during early culture experiments. This study suggests that tuning PR precisely is an attractive and effective strategy to provide a cells-suitable environment for scaffold fabrication for TE.


Asunto(s)
Celulosa , Células Madre Mesenquimatosas , Andamios del Tejido , Ingeniería de Tejidos/métodos , Polietilenglicoles , Diferenciación Celular , Proliferación Celular , Células Cultivadas
13.
Carbohydr Polym ; 315: 121006, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230626

RESUMEN

Photocurable 3D printing technology has outperformed extrusion-based 3D printing technology in material adaptability, resolution, and printing rate, yet is still limited by the insecure preparation and selection of photoinitiators and thus less reported. In this work, we developed a printable hydrogel that can effectively facilitate various solid or hollow structures and even lattice structures. The chemical and physical dual-crosslinking strategy combined with cellulose nanofibers (CNF) significantly improved the strength and toughness of photocurable 3D printed hydrogels. In this study, the tensile breaking strength, Young's modulus, and toughness of poly(acrylamide-co-acrylic acid)D/cellulose nanofiber (PAM-co-PAA)D/CNF hydrogels were 375 %, 203 % and 544 % higher than those of the traditional single chemical crosslinked (PAM-co-PAA)S hydrogels, respectively. Notably, its outstanding compressive elasticity enabled it to recover under 90 % strain compression (about 4.12 MPa). Resultantly, the proposed hydrogel can be utilized as a flexible strain sensor to monitor the motions of human movements, such as the bending of fingers, wrists, and arms, and even the vibration of a speaking throat. The output of electrical signals can still be collected through strain even under the condition of energy shortage. In addition, photocurable 3D printing technology can provide customized services for hydrogel-based e-skin, such as hydrogel-based bracelets, fingerstall, and finger joint sleeves.

14.
Biomed Pharmacother ; 169: 115851, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37976891

RESUMEN

BACKGROUND: Clesrovimab (MK-1654) is an investigational, half-life extended human monoclonal antibody (mAb) against RSV F glycoprotein in clinical trials as a prophylactic agent against RSV infection for infants. METHODS: This adult study measured clesrovimab concentrations in the serum and nasal epithelial lining fluid (ELF) to establish the partitioning of the antibody after dosing. Clesrovimab concentrations in the nasal ELF were normalized for sampling dilution using urea concentrations from ELF and serum. Furthermore, in vitro RSV neutralization of human nasal ELF following dosing was also measured to examine the activity of clesrovimab in the nasal compartment. FINDINGS: mAbs with YTE mutations are reported in literature to partition ∼1-2 % of serum antibodies into nasal mucosa. Nasal: serum ratios of 1:69-1:30 were observed for clesrovimab in two separate adult human trials after urea normalization, translating to 1.4-3.3 % of serum concentrations. The nasal PK and estimates of peripheral volume of distribution correlated with higher extravascular distribution of clesrovimab. These higher concentration of the antibody in the nasal ELF corroborated with the nasal sample's ability to neutralize RSV ex vivo. An overall trend of decreased viral plaque AUC was also noted with increasing availability of clesrovimab in the nasal ELF from a human RSV challenge study. INTERPRETATION: Along with its extended half-life, the higher penetration of clesrovimab into the nasal epithelial lining fluid and the associated local increase in RSV neutralization activity could offer infants better protection against RSV infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Adulto , Anticuerpos Monoclonales/uso terapéutico , Semivida , Anticuerpos Antivirales , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Urea
15.
Sci Adv ; 8(10): eabm2546, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275718

RESUMEN

Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction, the molecular determinants that govern NRP2 recognition remain unclear. Here, we describe the cryo-EM structure of NRP2 bound to Pentamer. The high-affinity interaction between these proteins is calcium dependent and differs from the canonical carboxyl-terminal arginine (CendR) binding that NRP2 typically uses. We also determine the structures of four neutralizing human antibodies bound to the HCMV Pentamer to define susceptible epitopes. Two of these antibodies compete with NRP2 binding, but the two most potent antibodies recognize a previously unidentified epitope that does not overlap the NRP2-binding site. Collectively, these findings provide a structural basis for HCMV tropism and antibody-mediated neutralization.

16.
Nat Commun ; 13(1): 2546, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538099

RESUMEN

Human metapneumovirus (hMPV) belongs to the Pneumoviridae family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies' germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development.


Asunto(s)
Metapneumovirus , Virus Sincitial Respiratorio Humano , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Células B de Memoria , Proteínas Virales de Fusión
17.
J Virol ; 84(6): 2996-3003, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042509

RESUMEN

The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01(+)/B*17(-) Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01(+) cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env approximately Gag/Pol > Gag approximately Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.


Asunto(s)
Adenoviridae/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Adenoviridae/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Ensayos Clínicos Fase II como Asunto , Humanos , Macaca mulatta/inmunología , Macaca mulatta/virología , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Carga Viral , Viremia/inmunología
18.
J Immunol ; 182(2): 980-7, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19124741

RESUMEN

Programmed Cell Death 1 (PD-1) plays a crucial role in immunomodulation. Binding of PD-1 to its ligand receptors down-regulates immune responses, and published reports suggest that this immune modulation is exploited in cases of tumor progression or chronic viral infection to evade immune surveillance. Thus, blockade of this signal could restore or enhance host immune functions. To test this hypothesis, we generated a panel of mAbs specific to human PD-1 that block PD ligand 1 and tested them for in vitro binding, blocking, and functional T cell responses, and evaluated a lead candidate in two in vivo rhesus macaque (Macaca mulatta) models. In the first therapeutic model, chronically SIV-infected macaques were treated with a single infusion of anti-PD-1 mAb; viral loads increased transiently before returning to, or falling below, pretreatment baselines. In the second prophylactic model, naive macaques were immunized with an SIV-gag adenovirus vector vaccine. Induced PD-1 blockade caused a statistically significant (p<0.05) increase in the peak percentage of T cells specific for the CM9 Gag epitope. These new results on PD-1 blockade in nonhuman primates point to a broader role for PD-1 immunomodulation and to potential applications in humans.


Asunto(s)
Antígenos CD/inmunología , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Anticuerpos Bloqueadores/metabolismo , Anticuerpos Bloqueadores/fisiología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/fisiología , Antígenos CD/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Antígeno B7-H1 , Línea Celular , Enfermedad Crónica , Humanos , Inmunoglobulina G/fisiología , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1 , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
19.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670932

RESUMEN

In this study, nanocellulose aerogels with a tunable Poisson's ratio were fabricated. Tissue engineering scaffolds with a tunable Poisson's ratio may be better able to simulate the mechanical behavior of natural tissues. A mixture of cellulose nanofibers (CNFs) and polyethylene glycol diacrylate (PEGDA) was used as the raw material to prepare CNF/PEGDA aerogels with a multiscale pore structure through a combination of stereolithography (SLA) and freeze-drying. The aerogels were fabricated with a regular macropore network structure and a random and homogeneous distribution of micropores. The macropore structure of the scaffolds could be customized through SLA, which resulted in scaffolds that exhibited one of three different mechanical behaviors: positive Poisson's ratio (PPR), negative Poisson's ratio (NPR) or zero Poisson's ratio (ZPR). Then, the hydrogel scaffolds were transformed into aerogel scaffolds through the freeze-drying method, which endowed the scaffolds with homogeneously distributed micropores. The material ratio and exposure were adjusted to obtain scaffolds with a clear pore structure. Then, the CNF/PEGDA scaffolds with different Poisson's ratios were subjected to mechanical tests, and their chondrogenic induction characteristics were determined. The NPR scaffold not only provided a good environment for cell growth but also affected mouse bone marrow mesenchymal stem cell (mBMSC) proliferation and chondrogenic induction. Thus, we provide a feasible scheme for the preparation of three-dimensional scaffolds with a multiscale pore structure and tunable Poisson's ratio, which contributes to cartilage repair in tissue engineering.

20.
J Virol Methods ; 297: 114268, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437874

RESUMEN

BACKGROUND: Plaque Reduction Neutralization Test (PRNT) is the standard assay used for measuring neutralizing antibody responses to Herpes simplex virus type-2 (HSV-2). The PRNT is a cumbersome, time-consuming and laborious assay. The development of a faster, high throughput microneutralization assay (MNA) for HSV-2 viruses carried out in a 96-well format will allow for rapid testing of large numbers of samples for drug and vaccine development. METHODS: We describe the generation of a MNA that utilizes a pair of anti-HSV human monoclonal antibodies (mAbs) for virus detection in HSV-2 infected Vero cells. Antibodies were generated by B-cell cloning from PBMC's isolated from HSV-1 negative/HSV-2 positive donors. We describe the selection and characterization of the antibodies used for virus detection by ELISA with purified, recombinant anti-HSV glycoproteins, antibody binding in infected cells, and Western Blot. We determine the anti-HSV-2 neutralizing titers of immune sera from mice by MNA and PRNT and compare these results by linear regression analysis. RESULTS: We show that neutralization titers for HSV-2, determined by the 96-well MNA correlate with titers determined by a PRNT completed in 24-well plates in both the absence (R2 = 0.8250) and presence (R2 = 0.7075) of complement. CONCLUSIONS: We have successfully developed an MNA that can be used in place of the burdensome PRNT to determine anti-HSV-2 neutralizing activity in serum. This MNA has much greater throughput than the PRNT, allowing many more samples to be processed in a shorter time saving ∼90 % of the time required by the laboratory scientist to complete the task as compared to the traditional PRNT.


Asunto(s)
Anticuerpos Antivirales , Herpesvirus Humano 2 , Animales , Chlorocebus aethiops , Leucocitos Mononucleares , Ratones , Pruebas de Neutralización/métodos , Células Vero
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda