Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochem Biophys Res Commun ; 490(3): 707-712, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28634077

RESUMEN

DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease.


Asunto(s)
Factores de Transcripción E2F/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Neoplasias/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Huesos/metabolismo , Huesos/patología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas Activadoras de GTPasa/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Proteínas de Neoplasias/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Regulación hacia Arriba
2.
Stem Cells Int ; 2020: 8829212, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354217

RESUMEN

Bone remodeling is a process delicately balanced between osteoclastic bone resorption and osteoblastic bone formation. Osteoclasts (OCs) are multinucleated giant cells formed through the fusion of monocytic precursors of the hematopoietic stem cells lineage. OCs are the exclusive cells responsible for the resorption and degradation of the mineralized bone matrix. Pantoprazole (PPZ), a proton pump inhibitor (PPI), is commonly prescribed to reduce excess gastric acid production for conditions such as gastroesophageal reflux disease and peptic ulcer disease. Studies have found contradictory effects of PPI therapy on bone metabolism due to the lack of understanding of the exact underlying mechanism. In this study, we found that PPZ inhibits receptor activator of nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis from bone marrow monocytic/macrophage (BMMs) precursors and the bone-resorbing activity of mature OCs. Correspondingly, the expression of OC marker genes was also attenuated. At the molecular level, PPZ treatment was associated with reduced activation of the ERK MAPK signaling pathways crucial to OC differentiation. Additionally, the in vivo administration of PPZ protected mice against lipopolysaccharide- (LPS-) induced inflammatory calvarial bone erosion, as a result of the reduced number and activity of OCs on the calvarial bone surface. Although PPI use is associated with increased risk of osteoporosis and bone fractures, our study provides evidence for the direct inhibitory effect of PPZ on OC formation and bone resorption in vitro and in vivo, suggesting a potential therapeutic use of PPZ in the treatment of osteolytic disease with localized bone destruction.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda