Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Chem ; 93(13): 5629-5634, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779138

RESUMEN

DNAzyme-mediated gene silencing was still challenged by off-target toxicity. In this study, we developed a split DNAzyme-based nanodevice (sDz-ND) that leveraged acidic tumor microenvironments to drive in situ assembly, thus modulating internalization behavior and silencing activity of DNAzymes. sDz-ND consisted of two different modules, which functionalized with split DNAzyme fragments, respectively. At psychological pH (∼7.4), the two modules were monodispersed, showing cleavage anergy and quenched fluorescence. At pH 6.3, the separated modules could cross-link with each other to form integrated sDz-ND, resulting activation of theranostic function. Meanwhile, the increased particle size and acquired multivalent effect favored 2.1-fold enhanced binding ability, which further facilitated rapid endocytosis of sDz-ND into target cancer cells, then allowing DNAzyme mediated gene silencing. The strategy provides a promising and general concept for precise tumor imaging and gene therapy.


Asunto(s)
ADN Catalítico , Neoplasias , ADN/genética , Fluorescencia , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Microambiente Tumoral
2.
Anal Chem ; 92(15): 10839-10846, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32618183

RESUMEN

Proximity-dependent hybridization chain reaction (HCR) has shown great potential in sensing biomolecules on the cell surface. However, the requirement of two adjacent bioevents occurring simultaneously limits its application. To solve the problem, split aptamers with target binding ability were introduced to combine with split triggers for initiating HCR, thus producing a novel dual-split aptamer probe (DSAP). By employing cancer-related receptors as models, in situ HCR on a cancer cell surface induced by recognition-driven remodeling of the DSAP was demonstrated. The DSAP consisted of two sequences. Each contained two segments; one derived from split aptamers and the other originated in split triggers. In the presence of target cells, split aptamers reassembled on the cell surface under the "induced-fit effect", thus forcing two split triggers close to each other. The remodeled DSAP worked as an intact trigger, which opened the H1 hairpin probe and then hybridized with the H2 hairpin probe, thus initiating HCR to produce an activated fluorescence signal. As a proof of concept, human liver cancer SMMC-7721 cells and their split ZY11 aptamer were used to construct the DSAP. Results indicated that the DSAP realized sensitive analysis of target cells, permitting the actual detection of 20 cells in the buffer. Moreover, the specific identification of target cells in mixed cell samples and the quantitative analysis of target cells in serum were also achieved. The DSAP strategy is facile and universal, which not only would expand the application range of HCR but also might be developed as a multitarget detection technique for bioanalysis.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Separación Celular/métodos , Hibridación in Situ/métodos , Línea Celular Tumoral , Humanos
3.
Analyst ; 145(15): 5194-5199, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555788

RESUMEN

MicroRNAs (miRNAs) have been shown to be promising biomarkers for disease diagnostics and therapeutics. However, the rapid, low-cost, sensitive, and selective detection of miRNAs remains a challenge because of their characters of small size, vulnerability to degradation, low abundance, and sequence similarity. Herein, we describe an enzyme-free amplification platform, consisting of a catalytic hairpin assembly (CHA) and DNA-templated silver nanoclusters (DNA/AgNCs), for miRNA analysis. In this work, two DNA hairpins (H1 and H2) were first designed for target miR-21-induced CHA, and then the fluorescence of DNA/AgNCs was quenched by BHQ1 to construct an activatable probe (AP). In the presence of target miR-21, hairpin H1 was opened by miR-21 through a hybridization reaction, and hairpin H2 was then opened by H1. During this process, miR-21 was released from H1 and participated in the next round of hybridization, triggering the CHA cycle reaction. The obtained H1-H2 products with sticky ends could react with the AP, forcing BHQ1 away from the DNA/AgNCs and thus causing the fluorescence recovery of the DNA/AgNCs. The assay for miR-21 detection demonstrated an excellent linear response to concentrations varying from 200 pM to 20 nM with the detection limit of 200 pM. The simple and cost-effective strategy holds great potential for application in biomedical research and clinical diagnostics.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Catálisis , ADN/genética , Límite de Detección , MicroARNs/genética , Plata , Espectrometría de Fluorescencia
4.
Anal Chem ; 89(14): 7477-7484, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28628302

RESUMEN

Measuring the levels of Fe3+ in human body has attracted considerable attention for health monitoring as it plays an essential role in many physiological processes. In this work, we reported a selective fluorescent nanoprobe for Fe3+ detection in biological samples based on ultrabright N/P codoped carbon dots. By employing adenosine 5'-triphosphate (ATP) as the carbon, nitrogen, and phosphorus source, the N/P codoped carbon dots could be simply prepared through hydrothermal treatment. The obtained carbon dots exhibited high quantum yields up to 43.2%, as well as excellent photostability, low toxicity, and water solubility. Because of the Fe-O-P bonds formed between Fe3+ and the N/P codoped carbon dots, this nanoprobe showed high selectivity toward Fe3+ against various potential interfering substances in the presence of EDTA. The fluorescence quenching of as-fabricated carbon dots was observed with the increasing Fe3+ concentration, and the calibration curve displayed a wide linear region over the range of 1-150 µM with a detection limit of 0.33 µM. The satisfactory accuracy was further confirmed with the river samples and ferrous sulfate tablets, respectively. With the above outstanding properties, these N/P codoped carbon dots were successfully applied for direct detection of Fe3+ in biological samples including human blood serum and living cells. As compared to the most reported carbon dots-based Fe3+ sensors, this nanoprobe showed high fluorescence, good accuracy, and excellent selectivity, which presents the potential practical application for diagnosis of Fe3+ related disease.


Asunto(s)
Carbono/química , Compuestos Férricos/sangre , Colorantes Fluorescentes/química , Nanopartículas/química , Puntos Cuánticos/química , Células HeLa , Humanos , Solubilidad
5.
Anal Chem ; 89(12): 6637-6644, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28492073

RESUMEN

Development of smart DNA nanostructures is of great value in cancer studies. Here, by integrating rolling circle amplification (RCA) into split aptamer design, a novel strategy of polyvalent and thermosensitive DNA nanoensembles was first proposed for cancer cell detection and manipulation. In this strategy, a long nanosolo ssDNA with repeated Split-b and Poly T regions was generated through RCA. Split-b supplied polyvalent binding sites while Poly T supported signal output by hybridizing with fluorophore-labeled poly A. After addition of Split-a, nanoensembles formed on the cell surface due to target-induced assembly of Split-a/Split-b from the free state to the recognition structure, and on the basis of the thermosensitivity of split aptamer, nanoensembles were controlled reversibly by changing temperatures. As proof of concept, split ZY11 against SMMC-7721 cancer was used to construct nanoensembles. Compared with monovalent split aptamer, nanoensembles were demonstrated to have a much stronger interaction with target cells, thus realizing an ∼2.8-time increase in signal-to-background ratio (SBR). Moreover, nanoensembles extended the tolerance range of target binding from 4 °C to room temperature and speeded recognition thus achieving almost 50% binding in 1 min. Then, nanoensembles were successfully applied to detect 7721 cells in serum and mixed cell samples. By utilizing microplate well surface as the model, temperature-controlled catch/release of target cells was also realized with nanoensembles, even under unfriendly conditions for monovalent split aptamer. The RCA-mediated aptameric nanoensembles strategy not only solved the problem of split aptamer in inefficient binding but also paved a brand new way for developing polyvalent and intelligent nanomaterials.


Asunto(s)
Separación Celular/métodos , ADN de Cadena Simple/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Nanoestructuras/química , Temperatura , Humanos , Células Tumorales Cultivadas
6.
Anal Chem ; 88(15): 7837-43, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27334762

RESUMEN

Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.


Asunto(s)
Citoplasma/química , Puntos Cuánticos/química , Carbono/química , Supervivencia Celular/efectos de los fármacos , Cloroquina/química , Cloroquina/farmacología , Dexametasona/química , Dexametasona/farmacología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Microscopía Confocal , Puntos Cuánticos/toxicidad , Especies Reactivas de Oxígeno/análisis , Compuestos de Sulfhidrilo/análisis
7.
Anal Chem ; 88(23): 11707-11713, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27807970

RESUMEN

Herein, a simple, facile, and label-free electrochemiluminescence (ECL) aptasensor platform was constructed by integration of aptamer-gated systems and vertically ordered mesoporous silica films (MSFs) grown in suit of indium-tin oxide (ITO) electrode. In this aptasensor platform, aptamer could be effectively adsorbed on the surface of aminated MSFs by noncovalent electrostatic attraction and then employed as an ideal gate material to control the blocking and releasing of luminescence reagents (Ru(bipy)32+) entrapped within the pores of MSFs. In the presence of target, the specific aptamer-target binding could trigger the uncapping the pores, releasing the Ru(bipy)32+ with detectable reduced of ECL signal. The feasibility and universality of this design was validated by employing three aptamers that bind to lysozyme, adenosine, and K+ as gate materials, and the detection limits were determined to be 0.06 nM, 0.75 nM, and 0.5 µM, respectively. This ECL aptasensor, based on the simple competitive procedure, was simple design, undemanding, and fast in operation. In addition, no other chemical modification of the aptamer was required, suggesting that this ECL aptasensor could be applied to many other target detections just by altering the aptamer sequence.

8.
Anal Chem ; 88(23): 11699-11706, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27807977

RESUMEN

DNA-based activatable theranostic nanoprobes are still unmet for in vivo applications. Here, by utilizing the "induced-fit effect", a smart split aptamer-based activatable theranostic probe (SATP) was first designed as "nanodoctor" for cancer-activated in vivo imaging and in situ drug release. The SATP assembled with quenched fluorescence and stable drug loading in its free state. Once binding to target proteins on cell surface, the SATP disassembled due to recognition-triggered reassembly of split aptamers with activated signals and freed drugs. As proof of concept, split Sgc8c against CEM cancer was used for theranostic studies. Benefiting from the design without blocking aptamer sequence, the SATP maintained an excellent recognition ability similar to intact Sgc8c. An "incubate-and-detect" assay showed that the SATP could significantly lower background and improve signal-to-background ratio (∼4.8 times of "always on" probes), thus affording high sensitivity for CEM cell analysis with 46 cells detected. Also, its high selectivity to target cells was demonstrated in analyzing mixed cell samples and serum samples. Then, using doxorubicin as a model, highly specific drug delivery and cell killing was realized with minimized toxicity to nontarget cells. Moreover, in vivo and ex vivo investigations also revealed that the SATP was specifically activated by CEM tumors inside mice. Especially, contrast-enhanced imaging was achieved in as short as 5 min, thus, laying a foundation for rapid diagnosis and timely therapy. As a biocompatible and target-activatable strategy, the SATP may be widely applied in cancer theranostics.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/análisis , Neoplasias/diagnóstico por imagen , Nanomedicina Teranóstica , Animales , Antibióticos Antineoplásicos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Imagen Óptica
9.
Anal Chem ; 87(14): 7141-7, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26100583

RESUMEN

Colorimetric analysis is promising in developing facile, fast, and point-of-care cancer diagnosis techniques, but the existing colorimetric cancer cell assays remain problematic because of dissatisfactory sensitivity as well as complex probe design or synthesis. To solve the problem, we here present a novel colorimetric analytical strategy based on iodide-responsive Cu-Au nanoparticles (Cu-Au NPs) combined with the iodide-catalyzed H2O2-TMB (3,3,5,5-tetramethylbenzidine) reaction system. In this strategy, bimetallic Cu-Au NPs prepared with an irregular shape and a diameter of ∼15 nm could chemically absorb iodide, thus indirectly inducing colorimetric signal variation of the H2O2-TMB system. By further utilizing its property of easy biomolecule modification, a versatile colorimetric platform was constructed for detection of any target that could cause the change of Cu-Au NPs concentration via molecular recognition. As proof of concept, an analysis of human leukemia CCRF-CEM cells was performed using aptamer Sgc8c-modified Cu-Au NPs as the colorimetric probe. Results showed that Sgc8c-modified Cu-Au NPs successfully achieved a simple, label-free, cost-effective, visualized, selective, and ultrasensitive detection of cancer cells with a linear range from 50 to 500 cells/mL and a detection limit of 5 cells in 100 µL of binding buffer. Moreover, feasibility was demonstrated for cancer cell analysis in diluted serum samples. The iodide-responsive Cu-Au NP-based colorimetric strategy might not only afford a new design pattern for developing cancer cell assays but also greatly extend the application of the iodide-catalyzed colorimetric system.


Asunto(s)
Colorimetría , Cobre/química , Oro/química , Yoduros/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Bencidinas/química , Catálisis , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/química , Neoplasias/diagnóstico , Oxidación-Reducción , Sistemas de Atención de Punto
10.
Analyst ; 140(12): 3925-8, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25918855

RESUMEN

A novel channel-switch-mode strategy for simultaneous sensing of Fe(3+) and Hg(2+) is developed with dual-excitation single-emission graphene quantum dots (GQDs). By utilizing the dual-channel fluorescence response performance of GQDs, this strategy achieved a facile, low-cost, masking agent-free, quantitative and selective dual-ion assay even in mixed ion samples and practical water samples.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Grafito/química , Hierro/análisis , Mercurio/análisis , Puntos Cuánticos/química , Hierro/química , Mercurio/química , Espectrometría de Fluorescencia , Factores de Tiempo
11.
Anal Chem ; 86(18): 9271-7, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25153687

RESUMEN

Activatable aptamer probes (AAPs) have emerged as a promising strategy in cancer diagnostics, but existing AAPs remain problematic due to complex design and synthesis, instability in biofluids, or lack of versatility for both in vitro and in vivo applications. Herein, we proposed a novel AAP strategy for cancer cell probing based on fluorophore-labeled aptamer/single-walled carbon nanotube (F-apt/SWNT) ensembles. Through π-stacking interactions and proximity-induced energy transfer, F-apt/SWNT with quenched fluorescence spontaneously formed in its free state and realized signal activation upon targeting surface receptors of living cells. As a demonstration, Sgc8c aptamer was used for in vitro analysis and in vivo imaging of CCRF-CEM cancer cells. It was found that self-assembled Cy5-Sgc8c/SWNT held robust stability for biological applications, including good dispersity in different media and ultralow fluorescence background persistent for 2 h in serum. Flow cytometry assays revealed that Cy5-Sgc8c/SWNT was specifically activated by target cells with dramatic fluorescence elevation and showed improved sensitivity with as low as 12 CCRF-CEM cells detected in mixed samples containing ~100,000 nontarget cells. In vivo studies confirmed that specifically activated fluorescence was imaged in CCRF-CEM tumors, and compared to "always on" probes, Cy5-Sgc8c/SWNT greatly reduced background signals, thus resulting in contrast-enhanced imaging. The general applicability of the strategy was also testified by detecting Ramos cells with aptamer TD05. It was implied that F-apt/SWNT ensembles hold great potential as a simple, stable, sensitive, specific, and versatile activatable platform for both in vitro cancer cell detection and in vivo cancer imaging.


Asunto(s)
Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Microscopía Confocal , Nanotubos de Carbono/química , Neoplasias/patología , Animales , Carbocianinas/química , Línea Celular Tumoral , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/metabolismo , Oxidación-Reducción , Espectrometría de Fluorescencia , Imagen de Lapso de Tiempo , Trasplante Heterólogo
12.
Anal Chem ; 86(14): 6976-82, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958493

RESUMEN

DNA-templated copper nanoparticles (CuNPs) have emerged as promising fluorescent probes for biochemical assays, but the reported monomeric CuNPs remain problematic because of weak fluorescence and poor stability. To solve this problem, a novel concatemeric dsDNA-templated CuNPs (dsDNA-CuNPs) strategy was proposed by introducing the rolling circle replication (RCR) technique into CuNPs synthesis. In this strategy, a short oligonucleotide primer could trigger RCR and be further converted to a long concatemeric dsDNA scaffold through hybridization. After the addition of copper ions and ascorbate, concatemeric dsDNA-CuNPs could effectively form and emit intense fluorescence in the range of 500-650 nm under a 340 nm excitation. In comparison with monomeric dsDNA-CuNPs, the sensitivity of concatemeric dsDNA-CuNPs was greatly improved with ~10,000 folds amplification. And their fluorescence signal was detected to reserve ~60% at 2.5 h after formation, revealing ~2 times enhanced stability. On the basis of these advantages, microRNA let-7d was selected as the model target to testify this strategy as a versatile assay platform. By directly using let-7d as the primer in RCR, the simple, low-cost, and selective microRNA detection was successfully achieved with a good linearity between 10 and 400 pM and a detection limit of 10 pM. The concatemeric dsDNA-CuNPs strategy might be widely adapted to various analytes that can directly or indirectly induce RCR.


Asunto(s)
Cobre/química , ADN/química , Nanopartículas del Metal/química , MicroARNs/análisis , Cartilla de ADN , Replicación del ADN , ADN Circular/química , ADN Concatenado/química , Colorantes Fluorescentes , Sensibilidad y Especificidad
13.
Analyst ; 139(17): 4181-4, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25037636

RESUMEN

A novel label-free tailed hairpin-shaped activatable aptamer probe (THAAP) was developed by rationally integrating an aptamer and a split G-quadruplex into one sequence. Based on target recognition-triggered in situ catalysis of split DNAzyme, the THAAP strategy achieved a simple, fast, washing-free, specific and quantitative colorimetric assay of human leukemic CCRF-CEM cells.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles/métodos , ADN Catalítico/metabolismo , G-Cuádruplex , Leucemia/diagnóstico , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Colorimetría/métodos , Humanos
14.
Talanta ; 279: 126603, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053355

RESUMEN

Enzyme catalytic cascade reactions based on peroxidase nanozymes and natural enzymes have aroused extensive attention in analytical fields. However, a majority of peroxidase nanozymes perform well only in acidic environments, resulting in their optimal pH mismatch with a neutral pH of natural enzymes, further restricting their application in biochemical sensing. Herein, Mn-doped CeO2 (Mn/CeO2) performing enhanced peroxidase-like activity at neutral conditions was prepared via a facile and feasible strategy. An effective enzyme cascade catalysis system via integrating glucose oxidase (GOx) with Mn/CeO2 was developed for one-pot detection of glucose in serum at neutral conditions. Using one-pot multistep catalytic reactions, this work provided a detection platform that allows for faster detection and easier operations than traditional methods. Under optimized conditions, our assay performed a sensitive detection of glucose ranging from 2.0 µΜ to 300 µΜ and a low detection limit of 0.279 µΜ. Notably, favorable analytical outcomes for glucose detection in serum samples were obtained, exhibiting potential applications in clinical diagnosis.


Asunto(s)
Cerio , Glucosa Oxidasa , Manganeso , Cerio/química , Concentración de Iones de Hidrógeno , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Manganeso/química , Glucemia/análisis , Nanopartículas/química , Límite de Detección , Técnicas Biosensibles/métodos , Humanos , Glucosa/análisis , Glucosa/química , Catálisis , Peroxidasa/química , Peroxidasa/metabolismo
15.
Int J Biol Macromol ; 273(Pt 2): 133134, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876234

RESUMEN

Hepatocyte growth factor receptor (c-Met) is a suitable molecular target for the targeted therapy of cancer. Novel c-Met-targeting drugs need to be developed because conventional small-molecule inhibitors and antibodies of c-Met have some limitations. To synthesize such drugs, we developed a bispecific DNA nanoconnector (STPA) to inhibit c-Met function. STPA was constructed by using DNA triangular prism as a scaffold and aptamers as binding molecules. After c-Met-specific SL1 and nucleolin-specific AS1411 aptamers were integrated with STPA, STPA could bind to c-Met and nucleolin on the cell membrane. This led to the formation of the c-Met/STPA/nucleolin complex, which in turn blocked c-Met activation. In vitro experiments showed that STPA could not only inhibit the c-Met signaling pathways but also facilitate c-Met degradation through lysosomes. STPA also inhibited c-Met-promoted cell migration, invasion, and proliferation. The results of in vivo experiments showed that STPA could specifically target to tumor site in xenograft mouse model, and inhibit tumor growth with low toxicity by downregulating c-Met pathways. This study provided a novel and simple strategy to develop c-Met-targeting drugs for the targeted therapy of cancer.


Asunto(s)
Aptámeros de Nucleótidos , Proliferación Celular , Neoplasias , Proteínas Proto-Oncogénicas c-met , Transducción de Señal , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Humanos , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Línea Celular Tumoral , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Nucleolina , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al ARN/metabolismo , Fosfoproteínas/metabolismo , Terapia Molecular Dirigida , ADN/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Oligodesoxirribonucleótidos
16.
ACS Pharmacol Transl Sci ; 7(1): 110-119, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230289

RESUMEN

Receptor tyrosine kinase (RTK) plays a crucial role in cancer progression, and it has been identified as a key drug target for cancer targeted therapy. Although traditional RTK-targeting drugs are effective, there are some limitations that potentially hinder the further development of RTK-targeting drugs. Therefore, it is urgently needed to develop novel, simple, and general RTK-targeting inhibitors with a new mechanism of action for cancer targeted therapy. Here, a cell membrane-anchored RTK-targeting DNA nanoinhibitor is developed to inhibit RTK function. By using a DNA tetrahedron as a framework, RTK-specific aptamers as the recognition elements, and cholesterol as anchoring molecules, this DNA nanoinhibitor could rapidly anchor on the cell membrane and specifically bind to RTK. Compared with traditional RTK-targeting inhibitors, this DNA nanoinhibitor does not need to bind at a limited domain on RTK, which increases the possibilities of developing RTK inhibitors. With the cellular-mesenchymal to epithelial transition factor (c-Met) as a target RTK, the DNA nanoinhibitor can not only induce steric hindrance effects to inhibit c-Met activation but also reduce the c-Met level via lysosome-mediated protein degradation and thus inhibition of c-Met signaling pathways and related cell behaviors. Moreover, the DNA nanoinhibitor is feasible for other RTKs by just replacing aptamers. This work may provide a novel, simple, and general RTK-targeting nanoinhibitor and possess great value in RTK-targeted cancer therapy.

17.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862475

RESUMEN

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Asunto(s)
Supervivencia Celular , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Glucosa/metabolismo , Línea Celular Tumoral , Autofagia , Ubiquitinación , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Anal Chim Acta ; 1263: 341245, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37225331

RESUMEN

Nitrite (NO2-) is extensively found in the daily dietary environment. However, consuming too much NO2- can pose serious health risks. Thus, we designed a NO2--activated ratiometric upconversion luminescence (UCL) nanosensor which could realize NO2- detection via the inner filter effect (IFE) between NO2--sensitive carbon dots (CDs) and upconversion nanoparticles (UCNPs). Due to the exceptional optical properties of UCNPs and the remarkable selectivity of CDs, the UCL nanosensor exhibited a good response to NO2-. By taking advantage of NIR excitation and ratiometric detection signal, the UCL nanosensor could eliminate the autofluorescence thereby increasing the detection accuracy effectively. Additionally, the UCL nanosensor proved successful in detecting NO2- quantitatively in actual samples. The UCL nanosensor provides a simple as well as sensitive sensing strategy for NO2- detection and analysis, which is anticipated to extend the utilization of upconversion detection in food safety.


Asunto(s)
Nitritos , Dióxido de Nitrógeno , Carbono , Inocuidad de los Alimentos , Luminiscencia
19.
Langmuir ; 28(35): 12909-15, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22889263

RESUMEN

Adenosine-5'-triphosphate (ATP) is a multifunctional nucleotide, which plays a vital role in many biological processes, including muscle contraction, cells functioning, synthesis and degradation of important cellular compounds, and membrane transport. Thus, the development of ATP-responsive controlled release system for bioorganism application is very significative. Here, an original and facile ATP-responsive controlled release system consisting of mesoporous silica nanoparticles (MSN) functionalized with an aptamer as cap has been designed. In this system, the ATP aptamer was first hybridized with arm single-stranded DNA1 (arm ssDNA1) and arm single-stranded DNA2 (arm ssDNA2) to form the sandwich-type DNA structure and then grafted onto the MSN surface through click chemistry approach, resulting in blockage of pores and inhibition of guest molecules release. In the presence of ATP, the ATP aptamer combined with ATP and got away from the pore, leaving the arm ssDNA1 and ssDNA2 on the surface of MSN. The guest molecules can be released because single-stranded DNA is flexible. The release of the guest molecules from this system then can be triggered by the addition of ATP. As a proof-of-principle, Ru(bipy)(3)(2+) was selected as the guest molecules, and the ATP-responsive loading and release of Ru(bipy)(3)(2+) have been investigated. The results demonstrate that the system had excellent loading efficiency (215.0 µmol g(-1) SiO(2)) and the dye release percentage can reach 83.2% after treatment with 20 mM ATP for 7 h. Moreover, the ATP-responsive behavior shows high selectivity with ATP analogues. However, the leakage of Ru(bipy)(3)(2+) molecule is neglectable if ATP was not added, indicating an excellent capping efficiency. Interestingly, this system can respond not only to the commercial ATP but also to the ATP extracted from living cells. By the way, this system is also relatively stable in mouse serum solution at 37 °C. This proof of concept might promote the application of ATP-responsive devices and can also provide an idea to design various target-responsive systems using other aptamers as cap.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aptámeros de Nucleótidos/metabolismo , Nanopartículas/química , Dióxido de Silicio/química , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/química , 2,2'-Dipiridil/metabolismo , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Secuencia de Bases , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Preparaciones de Acción Retardada , Ratones , Hibridación de Ácido Nucleico , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Porosidad
20.
Front Bioeng Biotechnol ; 10: 965337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091462

RESUMEN

Targeted drug delivery with minor off-target effects is urgently needed for precise cancer treatments. Here, a sequentially triggered strategy based on double targeting elements is designed to meet this purpose. By using an acidic pH-responsive i-motif DNA and a tumor cell-specific aptamer as targeting elements, a smart dual-targeted DNA nanocapsule (ZBI5-DOX) was constructed. ZBI5-DOX can be firstly triggered by acidic pH, and then bind to target cells via aptamer recognition and thus targeted release of the carried DOX chemotherapeutics. With this smart DNA nanocapsule, the carried DOX could be precisely delivered to target SMMC-7721 tumor cells in acidic conditions. After drug treatments, selective cytotoxicity of the DNA nanocapsule was successfully achieved. Meanwhile, the DNA nanocapsule had a specific inhibition effect on target cell migration and invasion. Therefore, this sequentially triggered strategy may provide deep insight into the next generation of targeted drug delivery.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda