Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 515(7528): 572-6, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25428506

RESUMEN

Human tumours typically harbour a remarkable number of somatic mutations. If presented on major histocompatibility complex class I molecules (MHCI), peptides containing these mutations could potentially be immunogenic as they should be recognized as 'non-self' neo-antigens by the adaptive immune system. Recent work has confirmed that mutant peptides can serve as T-cell epitopes. However, few mutant epitopes have been described because their discovery required the laborious screening of patient tumour-infiltrating lymphocytes for their ability to recognize antigen libraries constructed following tumour exome sequencing. We sought to simplify the discovery of immunogenic mutant peptides by characterizing their general properties. We developed an approach that combines whole-exome and transcriptome sequencing analysis with mass spectrometry to identify neo-epitopes in two widely used murine tumour models. Of the >1,300 amino acid changes identified, ∼13% were predicted to bind MHCI, a small fraction of which were confirmed by mass spectrometry. The peptides were then structurally modelled bound to MHCI. Mutations that were solvent-exposed and therefore accessible to T-cell antigen receptors were predicted to be immunogenic. Vaccination of mice confirmed the approach, with each predicted immunogenic peptide yielding therapeutically active T-cell responses. The predictions also enabled the generation of peptide-MHCI dextramers that could be used to monitor the kinetics and distribution of the anti-tumour T-cell response before and after vaccination. These findings indicate that a suitable prediction algorithm may provide an approach for the pharmacodynamic monitoring of T-cell responses as well as for the development of personalized vaccines in cancer patients.


Asunto(s)
Exoma/genética , Fenómenos Inmunogenéticos/genética , Espectrometría de Masas , Mutación , Neoplasias/genética , Animales , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Inmunidad Celular/inmunología , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Neoplasias/inmunología , Péptidos/genética , Estructura Terciaria de Proteína
2.
Nucleic Acids Res ; 43(2): 1189-203, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25550431

RESUMEN

Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody-siRNA complexes provide a possible solution. However, initial reports of antibody-siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody-siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges.


Asunto(s)
Anticuerpos , ARN Interferente Pequeño/administración & dosificación , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Anticuerpos/metabolismo , Línea Celular , Endosomas/metabolismo , Ratones , Neoplasias/genética , Ingeniería de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo
3.
J Biosci ; 29(4): 489-501, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15625404

RESUMEN

Encysted embryos (cysts) of the brine shrimp, Artemia, provide excellent opportunities for the study of biochemical and biophysical adaptation to extremes of environmental stress in animals. Among other virtues, this organism is found in a wide variety of hypersaline habitats, ranging from deserts, to tropics, to mountains. One adaptation implicated in the ecological success of Artemia is p26, a small heat shock protein that previous evidence indicates plays the role of a molecular chaperone in these embryos. We add to that evidence here. We summarize recently published work on thermal tolerance and stress protein levels in embryos from the San Francisco Bay (SFB) of California inoculated into experimental ponds in southern Vietnam where water temperatures are much higher. New results on the relative contents of three stress proteins (hsp70, artemin and p26) will be presented along with data on cysts of A. tibetiana collected from the high plateau of Tibet about 4.5 km above sea level. Unpublished results on the stress protein artemin are discussed briefly in the context of this paper, and its potential role as an RNA chaperone. Interestingly, we show that the substantial tolerance of A. franciscana embryos to ultraviolet (UV) light does not seem to result from intracellular biochemistry but, rather, from their surrounding thick shell, a biophysical adaptation of considerable importance since these embryos receive heavy doses of UV in nature.


Asunto(s)
Adaptación Fisiológica , Artemia/embriología , Artemia/fisiología , Proteínas de Choque Térmico/fisiología , Animales , Proteínas de Artrópodos , Proteínas Portadoras/metabolismo , Ambiente , Proteínas de Choque Térmico/metabolismo , Hipoxia/metabolismo , Proteínas de Unión a Hierro , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ARN , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda