Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biochem Cell Biol ; 102(3): 262-274, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567768

RESUMEN

Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.


Asunto(s)
Asma , Comunicación Celular , Inflamación , Asma/metabolismo , Asma/patología , Animales , Ratones , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos BALB C , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Linfocitos/metabolismo , Linfocitos/patología , Modelos Animales de Enfermedad , Humanos , Transducción de Señal , Progresión de la Enfermedad
2.
Ann Allergy Asthma Immunol ; 132(3): 346-354.e1, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37913839

RESUMEN

BACKGROUND: A lower adherence rate existed in patients receiving allergen-specific immunotherapy due to its lengthy period and adverse effects even though it is the only curative treatment for IgE-mediated allergies. Therefore, exploring innovative allergen-specific immunotherapy routes is necessary. OBJECTIVE: To explore the efficacy and safety of the intratonsillar injection of house dust mite (HDM) extract in patients with HDM-induced allergic rhinitis (AR). METHODS: A randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 80 patients with HDM-induced AR were randomized to receive 6 intratonsillar injections with HDM extract or placebo in 3 months. The total nasal symptom score (TNSS), visual analogue scale of nasal symptoms, combined symptom and medication score, mini rhinoconjunctivitis quality of life questionnaire, and serum allergen-specific IgG4 to Dermatophagoides pteronyssinus were all monitored at baseline and 3 months, 6 months, and 12 months after the treatment was finished. The intent-to-treat and per-protocol set (PPS) are both analyzed. RESULTS: The primary end points TNSS and ΔTNSS were improved significantly at 3 months after the patients with AR finished a 3-month 6-injection intratonsillar immunotherapy compared with those in the placebo treatment in both intent-to-treat and PPS. Results of visual analogue scale, combined symptom and medication score, and mini rhinoconjunctivitis quality of life questionnaire were also improved significantly at 3 months after the treatment in PPS. However, the improvement effect of intratonsillar immunotherapy at 6 and 12 months was limited and uncertain based on the data. The increase of serum Der p IgG4 in the active group was significantly higher than that in the placebo group at 3, 6, and 12 months after the treatment was finished. Adverse events were monitored, and no systemic adverse reactions were observed. CONCLUSION: The clinical trial revealed that intratonsillar injection with HDM extract was safe and effective in patients with AR. Optimizing the protocol and allergen formulations is expected to increase and maintain the efficacy of this novel approach. TRIAL REGISTRATION: https://www.chictr.org.cn/index.html, identifier: ChiCTR-TRC-13003600.


Asunto(s)
Conjuntivitis , Rinitis Alérgica Perenne , Rinitis Alérgica , Inmunoterapia Sublingual , Animales , Humanos , Calidad de Vida , Pyroglyphidae , Inmunoterapia Sublingual/métodos , Resultado del Tratamiento , Antígenos Dermatofagoides , Alérgenos , Rinitis Alérgica Perenne/tratamiento farmacológico , Método Doble Ciego , Conjuntivitis/etiología , Inmunoglobulina G
3.
Exp Cell Res ; 429(2): 113665, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236579

RESUMEN

Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Mitocondrias/metabolismo , Glucosa/metabolismo , Antígeno B7-H1 , Microambiente Tumoral
4.
J Allergy Clin Immunol ; 151(4): 1050-1066.e7, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587852

RESUMEN

BACKGROUND: Atopic march has long been recognized as the progression from atopic dermatitis (AD) to food allergy and asthma during infancy and childhood. However, effective blocking is hampered by the lack of specific biomarkers. OBJECTIVES: We aimed to investigate the pathologic progression of atopic march trajectories from skin to gut. METHODS: We built an atopic march mouse model by mechanical skin injury and percutaneous sensitization to peanut allergen. Anaphylaxis from the skin to the small intestine was then investigated by ELISA, RNA sequencing, quantitative real-time PCR, histopathologic analysis, and flow cytometry. The findings from the mice results were also verified by the serum samples of allergic pediatric patients. RESULTS: After modeling, inflammation in the skin and small intestine manifested as a mixed type of TH2 and TH17. Further analysis identified elevated succinate in the circulation and expanded tuft cells with upregulated IL-25 in the small intestine, resulting in increased intestinal type 2 innate lymphoid cells and an enhanced type 2 inflammatory response. In addition, free mitochondrial DNA (mtDNA) released after tissue damage was also involved in inflammation march from injured skin to small intestine through the STING pathway. Analysis of clinical samples verified that serum concentrations of succinate and mtDNA were higher in AD allergic children than non-AD allergic children. CONCLUSIONS: Succinate and mtDNA play key roles in skin-to-gut cross talk during the atopic march from AD to food allergy, and can be considered as biomarkers for risk assessment or targets for atopic march prevention strategies.


Asunto(s)
Dermatitis Atópica , Hipersensibilidad a los Alimentos , Ratones , Animales , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Inmunidad Innata , Ácido Succínico , ADN Mitocondrial/genética , Linfocitos/patología , Succinatos , Inflamación
5.
Allergy ; 78(6): 1570-1584, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876522

RESUMEN

BACKGROUND: Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch. METHODS: RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1ß-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions. RESULTS: We observed NLRP3 inflammasome activation and IL-1ß production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1ß axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1ß+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1ß indicate that the IL-1ß-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1ß axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs. CONCLUSION: Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1ß/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Receptores de Bombesina/metabolismo , Prurito/genética , Prurito/metabolismo , Enfermedad Crónica , Interleucina-1beta/metabolismo , Neuronas/metabolismo , Caspasas , Ratones Endogámicos C57BL
6.
Gastroenterology ; 156(8): 2297-2312, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30836096

RESUMEN

BACKGROUND & AIMS: Interleukin 6 (IL6) and tumor necrosis factor contribute to the development of colitis-associated cancer (CAC). We investigated these signaling pathways and the involvement of G protein subunit alpha i1 (GNAI1), GNAI2, and GNAI3 in the development of CAC in mice and humans. METHODS: B6;129 wild-type (control) or mice with disruption of Gnai1, Gnai2, and/or Gnai3 or conditional disruption of Gnai2 in CD11c+ or epithelial cells were given dextran sulfate sodium (DSS) to induce colitis followed by azoxymethane (AOM) to induce carcinogenesis; some mice were given an antibody against IL6. Feces were collected from mice, and the compositions of microbiomes were analyzed by polymerase chain reactions. Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) isolated from spleen and colon tissues were analyzed by flow cytometry. We performed immunoprecipitation and immunoblot analyses of colon tumor tissues, MDSCs, and mouse embryonic fibroblasts to study the expression levels of GNAI1, GNAI2, and GNAI3 and the interactions of GNAI1 and GNAI3 with proteins in the IL6 signaling pathway. We analyzed the expression of Gnai2 messenger RNA by CD11c+ cells in the colonic lamina propria by PrimeFlow, expression of IL6 in DCs by flow cytometry, and secretion of cytokines in sera and colon tissues by enzyme-linked immunosorbent assay. We obtained colon tumor and matched nontumor tissues from 83 patients with colorectal cancer having surgery in China and 35 patients with CAC in the United States. Mouse and human colon tissues were analyzed by histology, immunoblot, immunohistochemistry, and/or RNA-sequencing analyses. RESULTS: GNAI1 and GNAI3 (GNAI1;3) double-knockout (DKO) mice developed more severe colitis after administration of DSS and significantly more colonic tumors than control mice after administration of AOM plus DSS. Development of increased tumors in DKO mice was not associated with changes in fecal microbiomes but was associated with activation of nuclear factor (NF) κB and signal transducer and activator of transcription (STAT) 3; increased levels of GNAI2, nitric oxide synthase 2, and IL6; increased numbers of CD4+ DCs and MDSCs; and decreased numbers of CD8+ DCs. IL6 was mainly produced by CD4+/CD11b+, but not CD8+, DCs in DKO mice. Injection of DKO mice with a blocking antibody against IL6 reduced the expansion of MDSCs and the number of tumors that developed after CAC induction. Incubation of MDSCs or mouse embryonic fibroblasts with IL6 induced activation of either NF-κB by a JAK2-TRAF6-TAK1-CHUK/IKKB signaling pathway or STAT3 by JAK2. This activation resulted in expression of GNAI2, IL6 signal transducer (IL6ST, also called GP130) and nitric oxide synthase 2, and expansion of MDSCs; the expression levels of these proteins and expansion of MDSCs were further increased by the absence of GNAI1;3 in cells and mice. Conditional disruption of Gnai2 in CD11c+ cells of DKO mice prevented activation of NF-κB and STAT3 and changes in numbers of DCs and MDSCs. Colon tumor tissues from patients with CAC had reduced levels of GNAI1 and GNAI3 and increased levels of GNAI2 compared with normal tissues. Further analysis of a public human colorectal tumor DNA microarray database (GSE39582) showed that low Gani1 and Gnai3 messenger RNA expression and high Gnai2 messenger RNA expression were significantly associated with decreased relapse-free survival. CONCLUSIONS: GNAI1;3 suppresses DSS-plus-AOM-induced colon tumor development in mice, whereas expression of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+ DCs appears to promote these effects. Strategies to induce GNAI1;3, or block GNAI2 and IL6, might be developed for the prevention or therapy of CAC in patients.


Asunto(s)
Transformación Celular Neoplásica/genética , Colitis/patología , Neoplasias del Colon/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Animales , Biopsia con Aguja , Carcinogénesis , Colitis/genética , Neoplasias del Colon/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Interleucina-16/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Transducción de Señal/genética
7.
Exp Mol Pathol ; 117: 104559, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33121977

RESUMEN

Mallory-Denk Bodies (MDBs) are prevalent in a variety of liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. Long noncoding RNAs (lncRNAs) are considered as emerging new gene regulators, which participates in many functional activities through diverse mechanisms. We previously reported the mechanisms involved in the formation of liver MDBs in mouse model and in AH livers where MDBs had formed. To investigate the regulation of mRNAs expression and the probable role of lncRNAs in AH livers with MDBs, RNA-Seq analyses was further conducted to determine the mRNA and lncRNA expression profiles of the AH livers compared with the normal livers. It showed that different lncRNAs have different information contribution degrees by principal component analysis, and the integrated analysis of lncRNA-mRNA co-expression networks were linked to endocytosis, cell cycle, p53 signaling pathways in the human. Based on the co-expression networks, we identify 36 mRNAs that could be as potential biomarkers of alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). To our knowledge, this is the first report on the regulatory network of lncRNAs associated with liver MDB formation in human, and these results might offer new insights into the molecular mechanisms of liver MDB formation and the progression of AH to HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Hepatitis Alcohólica/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Animales , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Modelos Animales de Enfermedad , Endocitosis/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hepatitis Alcohólica/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Cuerpos de Mallory/genética , Cuerpos de Mallory/patología , Ratones , ARN Largo no Codificante/clasificación , ARN Mensajero/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética
8.
Exp Cell Res ; 382(1): 111447, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150612

RESUMEN

Heterotypic CICs (cell-in-cell structures) have been found between tumor cells and various immune cells in a variety of cancer tissues. The frequency of CICs has been found to correlate with tumor malignancy in some studies but not in others. Herein, we examined in depth the CICs observed in colon cancer to determine their potential significance in disease progression. Heterotypic CICs were observed by histochemistry between epithelial cells and lymphocytes in an expanded spectrum of colon tissue from colitis to cancer and in vitro studies were performed using the colonic tumor cell line HCT8 and human peripheral blood lymphocytes. Our data revealed that the CICs formed by colonic epithelial cells and infiltrated lymphocytes not only positively correlated with tumor malignancy but also were upregulated by the inflammatory cytokine IL-6. In addition, we observed that colon cancer cells could initiate autophagy for survival after cytotoxic lymphocyte internalization and that IL-6 could also be involved in this process to promote the death of lymphocytes in CIC structures. Furthermore, certain changes were observed in tumor cells after experiencing CICs. Our findings suggest that CICs formed by colon cancer cells and lymphocytes contribute to tumor escape from immune surveillance, which could be facilitated by IL-6, and might represent a previously undescribed pathway for tumor cells to adapt and evade host immune defense.


Asunto(s)
Autofagia/fisiología , Formación de la Célula en Célula/fisiología , Neoplasias del Colon/patología , Interleucina-6/fisiología , Escape del Tumor/fisiología , Adenocarcinoma/patología , Adenoma/patología , Autofagosomas/fisiología , Línea Celular Tumoral , Colitis Ulcerosa/patología , Progresión de la Enfermedad , Células Epiteliales/patología , Humanos , Células Asesinas Activadas por Linfocinas/patología , Linfocitos Infiltrantes de Tumor/patología , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T Citotóxicos/patología
9.
J Obstet Gynaecol Res ; 46(10): 2076-2083, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32840012

RESUMEN

AIM: To evaluate whether epigallocatechin-3-gallate acts on endometriosis mouse, and changes the status of DNA methylation of E-cadherin promoter region. METHODS: According to our previous research, the tracing nude mouse model of endometriosis was built up and randomly divided into three groups: control group (group A), epigallocatechin-3-gallate group (group B) and decitabine group (group C). Normal saline, epigallocatechin-3-gallate and decitabine were isometrically intraperitoneally injected into each group once in 2 days. In this period, the growth situations of lesions were monitored by living image system. After 16 days, the lesions were taken out and the distribution of E-cadherin and its methylated situation of promoter region were analyzed. RESULTS: The region of interest of ectopic lesion increased from 4th to 16th day in group A (P < 0.01); in group B and C, the region of interest of ectopic lesion increased in the 0-8th day (P < 0.01), and decreased in the 8-16th day (P < 0.01). The positive expression rate of E-cadherin in group C was higher than group B, and group B was higher than group A (P < 0.01). The DNA methylation status of E-cadherin promoter region in group A was higher than group B, and group B was higher than group C (P < 0.01). CONCLUSION: Epigallocatechin-3-gallate may inhibit the growth of endometrial lesion, affect the expression of E-cadherin on the cell membrane and reduce the status of DNA methylation of E-cadherin promoter region.


Asunto(s)
Metilación de ADN , Endometriosis , Animales , Cadherinas/genética , Catequina/análogos & derivados , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas
10.
Asian Pac J Allergy Immunol ; 38(1): 52-63, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30660176

RESUMEN

BACKGROUND: Staphylococcal enterotoxin A (SEA) is a well-known superantigen and stimulates human peripheral blood mononuclear cells (PBMCs) involving in the pathogenesis of inflammatory disorders and cancer. OBJECTIVE: To better understand the biological activities of SEA and the possible intracellular mechanisms by which SEA plays its roles in conditions like staphylococcal inflammatory and/or autoimmune disorders and immunotherapy. METHODS: Recombinant SEA (rSEA) was expressed in a prokaryotic expression system and its effects on the cytokine and chemokine production was examined by Enzyme-linked Immunospot (ELISpot) Assay and ELISA analysis. RESULTS: In vitro experiments showed rSEA could significantly enhance secretion of a broad spectrum of cytokines and chemokines from PBMCs dose-dependently. Increased secretion of cytokines and chemokines from rSEA stimulated PBMCs was barely affected by C-C motif chemokine receptor 2 (CCR2) antagonist INCB3344. However, Src, ERK and STAT pathway inhibitors were able to successfully block the enhanced secretion of most of cytokines and chemokines produced by rSEA stimulated PBMCs. CONCLUSIONS: Our work suggested that rSEA serves as a potent stimulant of PBMCs, and induces the release of cytokines and chemokines through Src, ERK and STAT pathways upon a relatively independent network. Our work also strongly supported that Src, ERK and STAT signaling inhibitors could be effective therapeutic agents against diseases like toxic shock syndrome or infection by microbes resistant to antibiotics.


Asunto(s)
Quimiocinas/inmunología , Citocinas/inmunología , Enterotoxinas/inmunología , Leucocitos Mononucleares/inmunología , Transducción de Señal , Adolescente , Adulto , Células Cultivadas , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Factores de Transcripción STAT/metabolismo , Superantígenos/inmunología , Adulto Joven
11.
Eur Respir J ; 53(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30655284

RESUMEN

Steroid insensitivity constitutes a major problem for asthma management. Toluene diisocyanate (TDI) is one of the leading allergens of asthma that induces both T-helper Th2 and Th17 responses, and is often associated with poor responsiveness to steroid treatment in the clinic.We sought to evaluate the effects of inhaled and systemic steroids on a TDI-induced asthma model and to find how interleukin (IL)-17A and IL-17F function in this model. BALB/c mice were exposed to TDI for generating an asthma model and were treated with inhaled fluticasone propionate, systemic prednisone, anti-IL-17A, anti-IL-17F, recombinant IL-17A or IL-17F.Both fluticasone propionate and prednisone showed no effects on TDI-induced airway hyperresponsiveness (AHR), bronchial neutrophilia and eosinophilia, and epithelial goblet cell metaplasia. TDI-induced Th2 and Th17 signatures were not suppressed by fluticasone propionate or prednisone. Treatment with anti-IL-17A after TDI exposure led to increased AHR, aggravated mucus production and airway eosinophil recruitment, accompanied by amplified Th2 responses, whereas anti-IL-17F ameliorated TDI-induced AHR and airway neutrophilia, with decreased Th17 responses. Recombinant IL-17A and IL-17F showed opposite effects to the monoclonal antibodies.IL-17A and IL-17F exert distinct biological effects during airway inflammation of a TDI-induced asthma model, which is unresponsive to both inhaled and systemic steroids.


Asunto(s)
Asma/tratamiento farmacológico , Asma/inmunología , Interleucina-17/fisiología , Animales , Broncodilatadores/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Fluticasona/uso terapéutico , Glucocorticoides/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Prednisona/uso terapéutico , 2,4-Diisocianato de Tolueno/administración & dosificación
12.
Brain Behav Immun ; 80: 711-724, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31100371

RESUMEN

Painful diabetic neuropathy (PDN) is a severely debilitating chronic pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of chronic pain induced by peripheral tissue inflammation or nerve injury. In this study we investigated whether CXCL13/CXCR5 mediates PDN and the underlying spinal mechanisms. We used the db/db type 2 diabetes mice, which showed obvious hyperglycemia and obese, long-term mechanical allodynia, and increased expression of CXCL13, CXCR5 as well as pro-inflammatory cytokines TNF-α and IL-6 in the spinal cord. Furthermore, in the spinal cord of db/db mice there is significantly increased gliosis and upregulated phosphorylation of cell signaling kinases, including pERK, pAKT and pSTAT3. Mechanical allodynia and upregulated pERK, pAKT and pSTAT3 as well as production of TNF-α and IL-6 were all attenuated by the noncompetitive NMDA receptor antagonist MK-801. If spinal giving U0126 (a selective MEK inhibitor) or AG490 (a Janus kinase (JAK)-STAT inhibitor) to db/db mice, both of them can decrease the mechanical allodynia, but only inhibit pERK (by U0126) or pSTAT3 (by AG490) respectively. Acute administration of CXCL13 in C57BL/6J mice resulted in exacerbated thermal hyperalgesia and mechanical allodynia, activation of the pERK, pAKT and pSTAT3 pathways and increased production of pro-inflammatory cytokines (IL-1ß, TNF-α and IL-6), which were all attenuated by knocking out of Cxcr5. In all, our work showed that chemokine CXCL13 and its receptor CXCR5 in spinal cord contribute to the pathogenesis of PDN and may help develop potential novel therapeutic approaches for patients afflicted with PDN.


Asunto(s)
Quimiocina CXCL13/metabolismo , Citocinas/biosíntesis , Neuropatías Diabéticas/metabolismo , Hiperalgesia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR5/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Butadienos/farmacología , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/patología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrilos/farmacología , Transducción de Señal , Médula Espinal/metabolismo , Tirfostinos/farmacología
13.
BMC Infect Dis ; 19(1): 999, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775660

RESUMEN

BACKGROUND: Recent studies have shown that CD103 is an important marker for tissue-resident memory T cells (TRM) which plays an important role in anti-infection. However, the role of CD103+ TRM was not elucidated in the progress of S. japonicum infection induced disease. METHODS: 6-8 weeks old C57BL/6 mice were infected by S. japonicum. Mice were sacrificed and the lungs were removed 5-6 weeks after infection. Immunofluorescent staining and Q-PCR were performed to identify the expression of CD103 molecule. Single cellular populations were made, percentages of CD103 on both CD4+ and CD8+ T lymphocytes were dynamical observed by flow cytometry (FCM). Moreover, the expression of memory T cells related molecules CD69 and CD62L, T cell function associated molecules CD107a, IFN-γ, IL-4, IL-9, and IL-10 were compared between CD103+ CD4+ and CD8+ T cells by FCM. RESULTS: CD103+ cells were emerged in the lung of both naive and S. japonicum infected mice. Both the percentage and the absolute numbers of pulmonary CD4+ and CD8+ cells were increased after S. japonicum infection (P < 0.05). The percentage of CD103+ cells in CD8+ T cells decreased significantly at the early stage of S. japonicum infection (P < 0.05). Increased CD69, decreased CD62L and CD107a expressions were detected on both CD4+ and CD8+ CD103+ T cells in the lungs of infected mice (P < 0.05). Compared to CD8+ CD103+ T cells, CD4+ CD103+ T cells from infected mice expressed higher level of CD69 and lower level CD62L molecules (P < 0.05). Moreover, higher percentage of IL-4+, IL-9+ and IL-10+ cells on CD4+ CD103+ pulmonary T cells was found in infected mice (P < 0.05). Significantly increased IL-4 and IL-9, and decreased IFN-γ expressing cells were detected in CD8+CD103+ cells of infected mice (P < 0.05). CONCLUSIONS: CD103-expressing pulmonary CD4+ and CD8+ T cells play important roles in mediating S. japonicum infection induced granulomatous inflammation in the lung.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Schistosoma japonicum , Esquistosomiasis Japónica/metabolismo , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Femenino , Expresión Génica/inmunología , Memoria Inmunológica , Pulmón/metabolismo , Pulmón/parasitología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquistosomiasis Japónica/microbiología
16.
Mol Cell Biochem ; 434(1-2): 75-87, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28470343

RESUMEN

Staphylococcal enterotoxin A (SEA) is well known as a superantigen and is highly potent in activating T lymphocytes. And it has been used clinically as an immunomodifier in the treatment of a number of tumors for years. However, the mechanism of its action remains largely unclear. In this study, SEA was found to significantly inhibit the proliferation and induce the death of human lung carcinoma A549 cells when co-cultured with human peripheral blood mononuclear cells (PBMCs). SEA could also induce the proliferation of human PBMCs and stimulate human PBMCs to release a wide range of cytokines that have broad anti-tumor activities such as IFN-γ, TNF-α, IL-2. Furthermore, SEA was found in PBMCs to induce a rapid and long-lasting phosphorylation of extracellular signal-regulated kinases (ERKs) which was significantly inhibited by MEK/ERK pathway inhibitors U0126 and PD0325901, and a late onset of phosphorylation of signal transducers and activators of transcription (STATs) which was significantly inhibited by a pan-JAK inhibitor Pyridone 6 (P6). Unexpectedly constitutive ERK or STATs phosphorylation was also significantly inhibited by P6 or U0126 in a dose-dependent manner, respectively. Summing up, our data reveal SEA may function as a novel protein drug used for cancer immunotherapy via inducing activation of PBMCs, immune cell crosstalk-dependent activation of ERK and STATs, and production of tumor-suppressive cytokines.


Asunto(s)
Antineoplásicos/farmacología , Enterotoxinas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Leucocitos Mononucleares/inmunología , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Citocinas/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Humanos , Inmunoterapia , Leucocitos Mononucleares/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología
17.
Neuroimmunomodulation ; 23(5-6): 295-300, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28391264

RESUMEN

OBJECTIVES: The aim of this study was to explore the frequency of KIR4.1 antibodies in patients with multiple sclerosis (MS) and in control groups using a cell-based assay. MATERIALS AND METHODS: A transfected HEK-293A cell line expressing KIR4.1 was established to test for the presence of KIR4.1 antibodies in blood serum. We tested 904 subjects, including 188 patients with MS, 264 patients with neuromyelitis optica spectrum disorders (NMOSD), 209 patients with other inflammatory neurologic disease (OIND), 203 patients with other noninflammatory neurological disease (OND), and 40 healthy controls. RESULTS: KIR4.1 antibodies were present in 23 of the 188 (12.2%) MS patients, 42 of the 264 (15.9%) NMOSD patients, 32 of the 209 (15.3%) OIND patients, 24 of the 203 (11.8%) OND patients, and 2 of the 40 (5%) healthy controls. There were no significant differences among the MS and control groups (p = 0.279). CONCLUSIONS: Anti-KIR4.1 antibody, as determined by a cell-based assay, is not a specific biomarker for MS.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes Desmielinizantes SNC/sangre , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Canales de Potasio de Rectificación Interna/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Acuaporina 4/inmunología , Pueblo Asiatico , Niño , Preescolar , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Neuromielitis Óptica/sangre , Neuromielitis Óptica/inmunología , Canales de Potasio de Rectificación Interna/genética , Transfección , Adulto Joven
18.
Regul Toxicol Pharmacol ; 79: 149-155, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27105772

RESUMEN

Genetically modified (GM) crops have achieved success in the marketplace and their benefits extend beyond the overall increase in harvest yields to include lowered use of insecticides and decreased carbon dioxide emissions. The most widely grown GM crops contain gene/s for targeted insect protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have immunostimulatory activity and therefore an adjuvanticity risk, the evidence shows that Cry proteins are expressed at very low levels in GM crops and are unlikely to function as adjuvants. This conclusion is based on critical review of the published literature on the effects of immunomodulation by Cry proteins, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops.


Asunto(s)
Proteínas Bacterianas/genética , Seguridad de Productos para el Consumidor , Productos Agrícolas/genética , Endotoxinas/genética , Inocuidad de los Alimentos , Proteínas Hemolisinas/genética , Insectos/crecimiento & desarrollo , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Productos Agrícolas/inmunología , Productos Agrícolas/metabolismo , Productos Agrícolas/parasitología , Endotoxinas/inmunología , Endotoxinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Parásitos , Humanos , Insectos/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Medición de Riesgo
19.
Protein Expr Purif ; 109: 93-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25462803

RESUMEN

House dust mite (Dermatophagoides farinae) allergen Der f1 is one of the most important indoor allergens associated with asthma, eczema and allergic rhinitis in humans. Therefore, sufficient quantities of Der f1 cysteine protease to be used for both experimental and therapeutic purposes are very much needed. Using recombinant DNA technology, high expression rates of cysteine proteases were obtained. The cDNA sequence encoding pro-Der f1 was cloned and expressed in Escherichia coli using the T7 based expression vector pET-44a and induced by isopropyl-ß-d-thiogalactoside at a final concentration of 0.2mM. Recombinant pro-Der f1 (pro-rDer f1) was expressed as an inclusion body and the isolated protease was solubilized, refolded and purified. The protease activities and IgE reactivities of pro-rDer f1 that were refolded by size-exclusion chromatography (SEC) were higher than those obtained by dilution. The pair of pro-rDer f1 polypeptides produced by this method could be used for more effective and safer allergen-specific immunotherapy or to produce enzymatically and immunologically active Der f1 for diagnostic testing and deciphering of immunotherapy mechanisms.


Asunto(s)
Alérgenos/metabolismo , Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Cisteína Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Cuerpos de Inclusión/metabolismo , Replegamiento Proteico , Pyroglyphidae/metabolismo , Animales , Western Blotting , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Disulfuro de Glutatión/metabolismo , Humanos , Inmunoglobulina E/sangre , Péptido Hidrolasas/metabolismo
20.
World J Microbiol Biotechnol ; 31(5): 681-90, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792298

RESUMEN

Papain-like cysteine proteases are widely expressed, fulfill specific functions in extracellular matrix turnover, antigen presentation and processing events, and may represent viable drug targets for major diseases. In depth and rigorous studies of the potential for these proteins to be targets for drug development require sufficient amounts of protease protein that can be used for both experimental and therapeutic purposes. Escherichia coli was widely used to express papain-like cysteine proteases, but most of those proteases are produced in insoluble inclusion bodies that need solubilizing, refolding, purifying and activating. Refolding is the most critical step in the process of generating active cysteine proteases and the current approaches to refolding include dialysis, dilution and chromatography. Purification is mainly achieved by various column chromatography. Finally, the attained refolded proteases are examined regarding their protease structures and activities.


Asunto(s)
Proteasas de Cisteína/aislamiento & purificación , Escherichia coli/enzimología , Cuerpos de Inclusión/enzimología , Cromatografía Liquida , Proteasas de Cisteína/genética , Escherichia coli/citología , Escherichia coli/genética , Replegamiento Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda