RESUMEN
S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616-19-5 was successfully obtained and exhibited higher SAM production (0.41 g/L vs 1.39 g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616-19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616-19-5 could produce 10.92 ± 0.2 g/L SAM in a 5-L fermenter after 96 h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.
Asunto(s)
Metionina , S-Adenosilmetionina , Saccharomyces cerevisiae/genética , Ensayos Analíticos de Alto Rendimiento , Fitomejoramiento , RacemetioninaRESUMEN
Schizophrenia (SZ) is a highly heritable mental disorder, and genome-wide association studies have identified the association between deleted in colorectal cancer (DCC) and SZ. Previous study has shown a lowered expression of DCC in the cerebral cortex of SZ patient. In this study, we identified novel single nucleotide polymorphisms (SNPs) of DCC statistically correlated with SZ. Based on these, we generated DCC conditional knockout (CKO) mice and explored behavioral phenotypes in these mice. We observed that deletion of DCC in cortical layer VI but not layer V led to deficits in fear and spatial memory, as well as defective sensorimotor gating revealed by the prepulse inhibition test (PPI). Critically, the defective sensorimotor gating could be restored by olanzapine, an antipsychotic drug. Furthermore, we found that the levels of p-AKT and p-GSK3α/ß were decreased, which was responsible for impaired PPI in the DCC-deficient mice. Finally, the DCC-deficient mice also displayed reduced spine density of pyramidal neurons and disturbed delta-oscillations. Our data, for the first time, identified and explored downstream substrates and signaling pathway of DCC which supports the hypothesis that DCC is a SZ-related risky gene and when defective, may promote SZ-like pathogenesis and behavioral phenotypes in mice.
RESUMEN
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Asunto(s)
Netrina-1 , Tractos Piramidales , Animales , Ratones , Axones/metabolismo , Axones/patología , Ratones Noqueados , Netrina-1/metabolismo , Netrina-1/genética , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , Movimiento/fisiologíaRESUMEN
S-adenosyl-L-methionine (SAM), used in diverse pharmaceutical applications, was biosynthesized from L-methionine (L-met) and adenosine triphosphate (ATP). This study aims to increase the accumulation of SAM in Saccharomyces cerevisiae by promoting ATP availability. Strain ΔSOD1 was obtained from the parent strain WT15-33 (CCTCC M 2021915) by deleting gene sod1, which improved the supply of ATP. The SAM content in strain ΔSOD1 exhibited a 22.3% improvement compared to the parent strain, which reached 93.6 mg g-1. The transformation of NADH (reduced nicotinamide adenine dinucleotide) and the relative expression of ATPase essential genes were investigated, respectively. The results showed that the lack of gene sod1 benefited the generation of ATP, which positively regulated the synthesis of SAM. Besides that, the production of SAM was further enhanced by improving substrate assimilation. With the infusion of 1.44 g L-1L-met and 0.60 g L-1 adenosine at 24 h (h) and 0 h following fermentation, the optimum medium could produce 1.54 g L-1 SAM. Based on the regulations mentioned above, the SAM concentration of strain ΔSOD1 enhanced from 7.3 g L-1 to 10.1 g L-1 in a 5-L fermenter in 118 h. This work introduces a novel idea for the biosynthesis of ATP and SAM, and the strain ΔSOD1 has the potential for industrial production.
Asunto(s)
S-Adenosilmetionina , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Fermentación , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1RESUMEN
OBJECTIVES: Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS: We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS: The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/ß were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/ß was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS: Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.