Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 127(8): 086802, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477427

RESUMEN

We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.

2.
Phys Rev Lett ; 126(7): 070501, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666445

RESUMEN

We develop a coherent beam splitter for single electrons driven through two tunnel-coupled quantum wires by surface acoustic waves (SAWs). The output current through each wire oscillates with gate voltages to tune the tunnel coupling and potential difference between the wires. This oscillation is assigned to coherent electron tunneling motion that can be used to encode a flying qubit and is well reproduced by numerical calculations of time evolution of the SAW-driven single electrons. The oscillation visibility is currently limited to about 3%, but robust against decoherence, indicating that the SAW electron can serve as a novel platform for a solid-state flying qubit.

3.
Nano Lett ; 20(10): 7476-7481, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32897724

RESUMEN

Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here, we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (∼2600 cm2 V-1 s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (∼1400 Ω-1 cm-1) and anomalous Hall angle (∼32%) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.

4.
Phys Rev Lett ; 124(11): 117701, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242710

RESUMEN

We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron antiparallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction at the qubit frequency. The qubit exhibits long T_{2}^{*} exceeding 1 µs that is limited by dephasing due to the ^{29}Si nuclei rather than charge noise thanks to the symmetric operation and a large micromagnet Zeeman field gradient. The randomized benchmarking shows 99.6% single gate fidelity which is the highest reported for singlet-triplet qubits.

5.
Phys Rev Lett ; 117(23): 236802, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982642

RESUMEN

We report on the single-shot readout of three two-electron spin states-a singlet and two triplet substates-whose z components of spin angular momentum are 0 and +1, in a gate-defined GaAs single quantum dot. The three spin states are distinguished by detecting spin-dependent tunnel rates that arise from two mechanisms: spin filtering by spin-resolved edge states and spin-orbital correlation with orbital-dependent tunneling. The three states form one ground state and two excited states, and we observe the spin relaxation dynamics among the three spin states.

6.
Phys Rev Lett ; 117(20): 206802, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886503

RESUMEN

We detect in real time interdot tunneling events in a weakly coupled two-electron double quantum dot in GaAs. At finite magnetic fields, we observe two characteristic tunneling times T_{d} and T_{b}, belonging to, respectively, a direct and a blocked (spin-flip-assisted) tunneling. The latter corresponds to the lifting of a Pauli spin blockade, and the tunneling times ratio η=T_{b}/T_{d} characterizes the blockade efficiency. We find pronounced changes in the behavior of η upon increasing the magnetic field, with η increasing, saturating, and increasing again. We explain this behavior as due to the crossover of the dominant blockade-lifting mechanism from the hyperfine to spin-orbit interactions and due to a change in the contribution of the charge decoherence.

7.
Phys Rev Lett ; 116(4): 046802, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871350

RESUMEN

We extract the phase coherence of a qubit defined by singlet and triplet electronic states in a gated GaAs triple quantum dot, measuring on time scales much shorter than the decorrelation time of the environmental noise. In this nonergodic regime, we observe that the coherence is boosted and several dephasing times emerge, depending on how the phase stability is extracted. We elucidate their mutual relations, and demonstrate that they reflect the noise short-time dynamics.

8.
Phys Rev Lett ; 117(23): 237002, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982627

RESUMEN

We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

9.
Phys Rev Lett ; 115(18): 186803, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565487

RESUMEN

Nuclear spins in a spin-blocked quantum dot can be pumped and eventually polarized in either of two opposite directions that are selected by applying two different source-drain voltages. Applying a square pulse train as the source-drain voltage can continuously switch the pumping direction alternately. We propose and demonstrate a critical behavior in the polarization after alternate pumping, where the final polarization is sensitive to the initial polarization and pulse conditions. This sensitivity leads to stochastic behavior in the final polarization under nominally the same pumping conditions.

10.
Phys Rev Lett ; 113(26): 267601, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615383

RESUMEN

We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96%, a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

11.
Phys Rev Lett ; 113(12): 126601, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25279636

RESUMEN

We report on the direct observation of the transmission phase shift through a Kondo correlated quantum dot by employing a new type of two-path interferometer. We observed a clear π/2-phase shift, which persists up to the Kondo temperature TK. Above this temperature, the phase shifts by more than π/2 at each Coulomb peak, approaching the behavior observed for the standard Coulomb blockade regime. These observations are in remarkable agreement with two-level numerical renormalization group calculations. The unique combination of experimental and theoretical results presented here fully elucidates the phase evolution in the Kondo regime.

12.
Phys Rev Lett ; 110(1): 016803, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383822

RESUMEN

We investigate two- and three-electron spin blockade in three vertical quantum dots (QDs) coupled in series. Two-electron spin blockade is found in a region where sequential tunneling through all QDs is forbidden but tunneling involving virtual hopping through an empty QD is allowed. It is observed only for the hole cycle with a distinct bias threshold for access to the triplet state. Three-electron spin blockade involving the quadruplet state is observed for nonequibilium conditions where sequential tunneling is allowed and the triplet state is accessible. Our results shine light on the importance of the nonequibilium conditions to obtain sufficient population of triplet and quadruplet states necessary for spin blockade.

13.
Phys Rev Lett ; 110(26): 266803, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23848908

RESUMEN

We demonstrate one and two photoelectron trapping and the subsequent dynamics associated with interdot transfer in double quantum dots over a time scale much shorter than the typical spin lifetime. Identification of photoelectron trapping is achieved via resonant interdot tunneling of the photoelectrons in the excited states. The interdot transfer enables detection of single photoelectrons in a nondestructive manner. When two photoelectrons are trapped at almost the same time we observed that the interdot resonant tunneling is strongly affected by the Coulomb interaction between the electrons. Finally the influence of the two-electron singlet-triplet state hybridization has been detected using the interdot tunneling of a photoelectron.

14.
Phys Rev Lett ; 107(2): 026602, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797631

RESUMEN

We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.

15.
Phys Rev Lett ; 106(7): 076801, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21405529

RESUMEN

Aharonov-Bohm (AB) oscillations are studied for a parallel-coupled vertical double quantum dot with a common source and drain electrode. We observe AB oscillations of current via a one-electron bonding state as the ground state and an antibonding state as the excited state. As the center gate voltage becomes more negative, the oscillation period is clearly halved for both the bonding and antibonding states, and the phase changes by half a period for the antibonding state. This result can be explained by a calculation that takes account of the indirect interdot coupling via the two electrodes.

16.
Phys Rev Lett ; 107(14): 146801, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107226

RESUMEN

A crucial requirement for quantum-information processing is the realization of multiple-qubit quantum gates. Here, we demonstrate an electron spin-based all-electrical two-qubit gate consisting of single-spin rotations and interdot spin exchange in a double quantum dot. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. We find that the degree of entanglement is controllable by the exchange operation time. The approach represents a key step towards the realization of universal multiple-qubit gates.

17.
Phys Rev Lett ; 106(14): 146804, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21561212

RESUMEN

We demonstrate single-shot detection of single electrons generated by single photons using an electrically tunable quantum dot and a quantum point contact charge detector. By tuning the quantum dot in a Coulomb blockade before the photoexcitation, we observe the trapping and subsequent resetting of single photogenerated electrons. The photogenerated electrons can be stored in the dot for a tunable time range from shorter to longer than the spin-flip time T1. We combine this trap-reset technique with spin-dependent tunneling under magnetic fields to observe the spin-dependent photon detection within the T1.

18.
Phys Rev Lett ; 104(13): 136801, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20481900

RESUMEN

We investigated the electron transport property of the InGaAs/GaAs double quantum dots, the electron g factors of which are different from each other. We found that in a magnetic field, the resonant tunneling is suppressed even if one of the Zeeman sublevels is aligned. This is because the other misaligned Zeeman sublevels limit the total current. A finite broadening of the misaligned sublevel partially relieves this bottleneck effect, and the maximum current is reached when interdot detuning is half the Zeeman energy difference.

19.
Phys Rev Lett ; 104(7): 076805, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20366905

RESUMEN

The coupling of a quantum dot with a BCS-type superconducting reservoir results in an intriguing system where low energy physics is governed by the interplay of two distinct phases, singlet and doublet. In this Letter we show that the spectrum of Andreev energy levels, which capture the properties of the two phases, can be detected in transport measurements with a quantum dot strongly coupled to a superconducting lead and weakly coupled to a normal metal lead. We observe phase transitions between BCS singlet and degenerate magnetic doublet states when the quantum dot chemical potential is tuned with an electrostatic gate, in good qualitative agreement with numerical renormalization group calculations.

20.
Phys Rev Lett ; 104(24): 246801, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20867321

RESUMEN

The anisotropy of the spin-orbit interaction (SOI) is studied for a single uncapped InAs self-assembled quantum dot holding just a few electrons. The SOI energy is evaluated from anticrossing or SOI-induced hybridization between the ground and excited states with opposite spins. The magnetic angular dependence of the SOI energy falls on an absolute cosine function for azimuthal rotation, and a cosinelike function for tilting rotation. Furthermore, the SOI energy is quenched for a specific magnetic field vector. The angular dependence of SOI is found to compare well with calculation of Rashba SOI in a two-dimensional harmonic potential.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda