Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 294(5): 1451-1463, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30514760

RESUMEN

Polycomb group (PcG) proteins repress master regulators of development and differentiation through organization of chromatin structure. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the cell nucleus, and these condensates are the physical sites of PcG-targeted gene silencing via formation of facultative heterochromatin. However, the physiochemical principles underlying the formation of PcG condensates remain unknown, and their determination could shed light on how these condensates compact chromatin. Using fluorescence live-cell imaging, we observed that the Polycomb repressive complex 1 (PRC1) protein chromobox 2 (CBX2), a member of the CBX protein family, undergoes phase separation to form condensates and that the CBX2 condensates exhibit liquid-like properties. Using site-directed mutagenesis, we demonstrated that the conserved residues of CBX2 within the intrinsically disordered region (IDR), which is the region for compaction of chromatin in vitro, promote the condensate formation both in vitro and in vivo We showed that the CBX2 condensates concentrate DNA and nucleosomes. Using genetic engineering, we report that trimethylation of Lys-27 at histone H3 (H3K27me3), a marker of heterochromatin formation produced by PRC2, had minimal effects on the CBX2 condensate formation. We further demonstrated that the CBX2 condensate formation does not require CBX2-PRC1 subunits; however, the condensate formation of CBX2-PRC1 subunits depends on CBX2, suggesting a mechanism underlying the assembly of CBX2-PRC1 condensates. In summary, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that phase-separated condensates can organize PcG-bound chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , ADN/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Histonas/genética , Ratones , Ratones Noqueados , Nucleosomas/genética , Complejo Represivo Polycomb 1/genética , Unión Proteica
2.
J Biol Chem ; 290(47): 28038-28054, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26381410

RESUMEN

Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.


Asunto(s)
Cromatina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Epigénesis Genética , Humanos , Ratones
3.
Cell Death Differ ; 30(4): 952-965, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681780

RESUMEN

The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Ratones , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Activación Transcripcional/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Neoplasias/genética , Silenciador del Gen
4.
iScience ; 26(7): 107012, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360690

RESUMEN

Congenital heart defects (CHDs) are frequent in children with Down syndrome (DS), caused by trisomy of chromosome 21. However, the underlying mechanisms are poorly understood. Here, using a human-induced pluripotent stem cell (iPSC)-based model and the Dp(16)1Yey/+ (Dp16) mouse model of DS, we identified downregulation of canonical Wnt signaling downstream of increased dosage of interferon (IFN) receptors (IFNRs) genes on chromosome 21 as a causative factor of cardiogenic dysregulation in DS. We differentiated human iPSCs derived from individuals with DS and CHDs, and healthy euploid controls into cardiac cells. We observed that T21 upregulates IFN signaling, downregulates the canonical WNT pathway, and impairs cardiac differentiation. Furthermore, genetic and pharmacological normalization of IFN signaling restored canonical WNT signaling and rescued defects in cardiogenesis in DS in vitro and in vivo. Our findings provide insights into mechanisms underlying abnormal cardiogenesis in DS, ultimately aiding the development of therapeutic strategies.

5.
Methods Mol Biol ; 1689: 113-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29027169

RESUMEN

Epigenetic complexes regulate chromatin dynamics via binding to and assembling on chromatin. However, the mechanisms of chromatin binding and assembly of epigenetic complexes within cells remain incompletely understood, partly due to technical challenges. Here, we present a new approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) that enables to assess the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was developed based on chromatin immunoprecipitation followed by single-molecule fluorescence microscopy imaging. In this method, an epigenetic complex subunit fused with a gene coding for a fluorescent protein is stably expressed in its corresponding knockout cells. Nucleosomes associated with epigenetic complexes are isolated from cells at native conditions and incubated with biotinylated antibodies. The resulting complexes are immobilized on a quartz slide that had been passivated and functionalized with NeutrAvidin. Image stacks are then acquired by using single-molecule TIRF microscopy. The individual spots imaged by TIRF microscopy represent single protein-nucleosome complexes. The number of copies of the protein complexes on a nucleosome is inferred from the fluorescence photobleaching measurements. Sm-ChIPi is a sensitive and direct method that can quantify the cellular assembly stoichiometry of epigenetic complexes on chromatin.


Asunto(s)
Inmunoprecipitación de Cromatina , Cromatina/genética , Cromatina/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Imagen Molecular , Animales , Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Imagen Molecular/métodos , Nucleosomas , Ultracentrifugación
6.
Nat Commun ; 9(1): 2080, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802243

RESUMEN

Over 80% of diffuse intrinsic pontine gliomas (DIPGs) harbor a point mutation in histone H3.3 where lysine 27 is substituted with methionine (H3.3K27M); however, how the mutation affects kinetics and function of PcG proteins remains elusive. We demonstrate that H3.3K27M prolongs the residence time and search time of Ezh2, but has no effect on its fraction bound to chromatin. In contrast, H3.3K27M has no effect on the residence time of Cbx7, but prolongs its search time and decreases its fraction bound to chromatin. We show that increasing expression of Cbx7 inhibits the proliferation of DIPG cells and prolongs its residence time. Our results highlight that the residence time of PcG proteins directly correlates with their functions and the search time of PcG proteins is critical for regulating their genomic occupancy. Together, our data provide mechanisms in which the cancer-causing histone mutation alters the binding and search dynamics of epigenetic complexes.


Asunto(s)
Neoplasias del Tronco Encefálico/patología , Glioma/patología , Histonas/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Neoplasias del Tronco Encefálico/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Células HEK293 , Histonas/metabolismo , Humanos , Microscopía Intravital , Ratones , Mutación , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Cultivo Primario de Células , Imagen Individual de Molécula , Células Tumorales Cultivadas
7.
Elife ; 52016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27723458

RESUMEN

The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Células Cultivadas , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones , Unión Proteica , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda