Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nucleic Acids Res ; 52(D1): D791-D797, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953409

RESUMEN

UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hongos , ADN Espaciador Ribosómico , Hongos/genética , Biodiversidad , ADN de Hongos , Filogenia
2.
Environ Microbiol ; 26(6): e16662, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840258

RESUMEN

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.


Asunto(s)
Micorrizas , Picea , Raíces de Plantas , Picea/microbiología , Picea/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Micorrizas/fisiología , Noruega , Simbiosis , Hongos/genética , Hongos/clasificación , Hongos/crecimiento & desarrollo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo
3.
Environ Microbiol ; 25(10): 1875-1893, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37188366

RESUMEN

Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.


Asunto(s)
Agaricales , Micorrizas , Simbiosis , Plantas/microbiología , Raíces de Plantas/microbiología
4.
New Phytol ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984824

RESUMEN

Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic 'filters' comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.

5.
Nucleic Acids Res ; 47(D1): D259-D264, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30371820

RESUMEN

UNITE (https://unite.ut.ee/) is a web-based database and sequence management environment for the molecular identification of fungi. It targets the formal fungal barcode-the nuclear ribosomal internal transcribed spacer (ITS) region-and offers all ∼1 000 000 public fungal ITS sequences for reference. These are clustered into ∼459 000 species hypotheses and assigned digital object identifiers (DOIs) to promote unambiguous reference across studies. In-house and web-based third-party sequence curation and annotation have resulted in more than 275 000 improvements to the data over the past 15 years. UNITE serves as a data provider for a range of metabarcoding software pipelines and regularly exchanges data with all major fungal sequence databases and other community resources. Recent improvements include redesigned handling of unclassifiable species hypotheses, integration with the taxonomic backbone of the Global Biodiversity Information Facility, and support for an unlimited number of parallel taxonomic classification systems.


Asunto(s)
Biología Computacional/métodos , Código de Barras del ADN Taxonómico/métodos , Bases de Datos de Ácidos Nucleicos , Hongos/clasificación , Hongos/genética , Genoma Fúngico , Genómica , Genómica/métodos , Programas Informáticos , Navegador Web
6.
New Phytol ; 227(2): 601-612, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32171021

RESUMEN

The root-associated habit has evolved on numerous occasions in different fungal lineages, suggesting a strong evolutionary pressure for saprotrophic fungi to switch to symbiotic associations with plants. Species within the ubiquitous, saprotrophic genus Mycena are frequently major components in molecular studies of root-associated fungal communities, suggesting that an evaluation of their trophic status is warranted. Here, we report on interactions between a range of Mycena species and the plant Betula pendula. In all, 17 Mycena species were inoculated onto B. pendula seedlings. Physical interactions between hyphae and fine roots were examined using differential staining and fluorescence microscopy. Physiological interactions were investigated using 14 C and 32 P to show potential transfer between symbionts. All Mycena species associated closely with fine roots, showing hyphal penetration into the roots, which in some cases were intracellular. Seven species formed mantle-like structures around root tips, but none formed a Hartig net. Mycena pura and Mycena galopus both enhanced seedling growth, with M. pura showing significant transfer of 32 P to the seedlings. Our results support the view that several Mycena species can associate closely with plant roots and some may potentially occupy a transitional state between saprotrophy and biotrophy.


Asunto(s)
Agaricales , Micorrizas , Raíces de Plantas , Plantones , Simbiosis
8.
Ecol Lett ; 21(5): 713-723, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29536604

RESUMEN

Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.


Asunto(s)
Micorrizas , Suelo , Árboles , Bosques , Fósforo , Raíces de Plantas , Suelo/química
9.
New Phytol ; 218(2): 470-478, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29397029

RESUMEN

In alpine ecosystems, nitrogen (N) deposition has been linked to plant community composition change, including loss of bryophytes and increase of graminoids. Since bryophyte growth is stimulated by increased N availability, it has been hypothesized that loss of bryophyte cover is driven by enhanced decomposition. As bryophyte mats are a significant carbon (C) store, their loss may impact C storage in these ecosystems. We used an N deposition gradient across 15 sites in the UK to examine effects of N deposition on bryophyte litter quality, decomposition and C and N stocks in Racomitrium moss-sedge heath. Increasing N deposition reduced C : N in bryophyte litter, which in turn enhanced decomposition. Soil N stocks increased significantly in response to increased N deposition, and soil C : N declined. However, depletion of the bryophyte mat and its replacement by graminoids under high N deposition was not associated with a change in total ecosystem C stocks. We conclude that decomposition processes in Racomitrium heath are very sensitive to N deposition and provide a mechanism by which N deposition drives depletion of the bryophyte mat. Nitrogen deposition did not measurably alter C stocks, but changes in soil N stocks and C : N suggest the ecosystem is becoming N saturated.


Asunto(s)
Briófitas/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Biomasa , Geografía , Modelos Lineales , Hojas de la Planta/fisiología , Reino Unido
10.
New Phytol ; 213(2): 852-863, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27636558

RESUMEN

A major gap in our understanding of biodiversity-ecosystem function relationships concerns the role of intra- and interspecific diversity of mycorrhizal fungi, which are critical for plant fitness, biogeochemical cycling and other processes. Here, we test the hypothesis that the identity and richness of ectomycorrhizal (ECM) fungi at the intra- and interspecific levels affect ecosystem multifunctionality by regulating plant and fungal productivity, soil CO2 efflux and nutrient retention. Microcosms containing Scots pine (Pinus sylvestris) seedlings colonized by different ECM fungal isolates, in monocultures and mixtures, enabled us to test for both intra- and interspecific identity and richness effects, and transgressive overyielding. Intra- and interspecific identity had modest but significant effects on plant and fungal productivity and nutrient retention, but no effect on CO2 efflux. Intraspecific richness increased plant root productivity and ECM root tips but decreased hyphal length, whereas interspecific richness had no effects. Interspecific mixtures outperformed the most productive monocultures in only 10% of the cases, compared with 42% for the intraspecific mixtures. Both intra- and interspecific identity and richness of ECM fungi regulate ecosystem multifunctionality, but their effects on the direction and magnitude of individual variables differ. Transgressive overyielding suggests that positive niche complementarity effects are driving some of the responses to intraspecific richness.


Asunto(s)
Biodiversidad , Hongos/fisiología , Micorrizas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Pinus sylvestris/microbiología , Dióxido de Carbono/metabolismo , Recuento de Colonia Microbiana , Micorrizas/crecimiento & desarrollo , Pinus sylvestris/crecimiento & desarrollo , Raíces de Plantas/microbiología , Análisis de Componente Principal , Plantones/microbiología , Suelo/química , Especificidad de la Especie
11.
Mycorrhiza ; 27(8): 831-839, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28842791

RESUMEN

Typically, Mycena species are viewed as saprotrophic fungi. However, numerous detections of Mycena spp. in the roots of green plants suggest that a continuum from saprotrophy to biotrophy could exist. In particular, mycenoid species have repeatedly been found in Ericaceae plant roots. Our study asked whether (1) Mycena species are commonly found in the roots of green Ericaceae plants; (2) Mycena sequences are limited to a single group/lineage within the genus; and (3) a Mycena sp. can behave as a beneficial root associate with a typical ericoid mycorrhizal plant (Vaccinium corymbosum), regardless of how much external labile carbon is available. We detected Mycena sequences in roots of all sampled Ericaceae plants. Our Mycena sequences clustered in four different groups distributed across the Mycena genus. Only one group could be assigned with confidence to a named species (M. galopus). Our Mycena sequences clustered with other Mycena sequences detected in roots of ericoid mycorrhizal plant species collected throughout Europe, America, and Australia. An isolate of M. galopus promoted growth of V. corymbosum seedlings in vitro regardless of external carbon supply in the media. Seedlings inoculated with M. galopus grew as well as those inoculated with the ericoid mycorrhizal fungus Rhizoscyphus ericae. Surprisingly, this M. galopus isolate colonized Vaccinium roots and formed distinctive peg-like structures. Our results suggest that Mycena species might operate along a saprotroph-symbiotic continuum with a range of ericoid mycorrhizal plant species. We discuss our results in terms of fungal partner recruitment by Ericaceae plants.


Asunto(s)
Agaricales/fisiología , Arándanos Azules (Planta)/microbiología , Micorrizas/fisiología , Simbiosis , Ascomicetos/fisiología , Arándanos Azules (Planta)/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología
12.
J Nutr ; 146(11): 2187-2198, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27655761

RESUMEN

BACKGROUND: The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. OBJECTIVE: We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. METHODS: A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m2) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. RESULTS: Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). CONCLUSIONS: Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.


Asunto(s)
Encéfalo/metabolismo , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Comidas , Adulto , Colecistoquinina/sangre , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neuronas/fisiología , Adulto Joven
13.
New Phytol ; 206(3): 1145-1155, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25655082

RESUMEN

Changes in species richness and distributions of ectomycorrhizal (ECM) fungal communities along altitudinal gradients have been attributed to changes in both host distributions and abiotic variables. However, few studies have considered altitudinal relationships of ECM fungi associated with a single host to identify the role of abiotic drivers. To address this, ECM fungal communities associated with one host were assessed along five altitudinal transects in Scotland. Roots of Scots pine (Pinus sylvestris) were collected from sites between 300 and 550-600 m altitude, and ECM fungal communities were identified by 454 pyrosequencing of the fungal internal transcribed spacer (ITS) region. Soil moisture, temperature, pH, carbon : nitrogen (C : N) ratio and organic matter content were measured as potential predictors of fungal species richness and community composition. Altitude did not affect species richness of ECM fungal communities, but strongly influenced fungal community composition. Shifts in community composition along the altitudinal gradient were most clearly related to changes in soil moisture and temperature. Our results show that a 300 m altitudinal gradient produced distinct shifts in ECM fungal communities associated with a single host, and that this pattern was strongly related to climatic variables. This finding suggests significant climatic niche partitioning among ECM fungal species.


Asunto(s)
Altitud , Biodiversidad , Clima , Micorrizas/fisiología , Carbono/análisis , ADN de Hongos/química , Especificidad del Huésped , Datos de Secuencia Molecular , Micorrizas/clasificación , Micorrizas/genética , Nitrógeno/análisis , Pinus sylvestris/microbiología , Escocia , Suelo/química , Microbiología del Suelo
14.
Phys Rev Lett ; 114(3): 031101, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25658988

RESUMEN

We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime.

15.
New Phytol ; 201(2): 610-622, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117652

RESUMEN

We studied the role of taxonomical and functional ectomycorrhizal (ECM) fungal diversity in root formation and nutrient uptake by Norway spruce (Picea abies) seedlings with fast- and slow-growing phenotypes. Seedlings were grown with an increasing ECM fungal diversity gradient from one to four species and sampled before aboveground growth differences between the two phenotypes were apparent. ECM fungal colonization patterns were determined and functional diversity was assayed via measurements of potential enzyme activities of eight exoenzymes probably involved in nutrient mobilization. Phenotypes did not vary in their receptiveness to different ECM fungal species. However, seedlings of slow-growing phenotypes had higher fine-root density and thus more condensed root systems than fast-growing seedlings, but the potential enzyme activities of ectomycorrhizas did not differ qualitatively or quantitatively. ECM species richness increased host nutrient acquisition potential by diversifying the exoenzyme palette. Needle nitrogen content correlated positively with high chitinase activity of ectomycorrhizas. Rather than fast- and slow-growing phenotypes exhibiting differing receptiveness to ECM fungi, our results suggest that distinctions in fine-root structuring and in the belowground growth strategy already apparent at early stages of seedling development may explain later growth differences between fast- and slow-growing families.


Asunto(s)
Micorrizas/fisiología , Picea/microbiología , Biodiversidad , Nitrógeno/metabolismo , Fenotipo , Picea/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Factores de Tiempo
16.
Acta Biomater ; 183: 130-145, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815684

RESUMEN

Osteoarthritis (OA) poses significant therapeutic challenges, particularly OA that affects the hand. Currently available treatment strategies are often limited in terms of their efficacy in managing pain, regulating invasiveness, and restoring joint function. The APRICOTⓇ implant system developed by Aurora Medical Ltd (Chichester, UK) introduces a minimally invasive, bone-conserving approach for treating hand OA (https://apricot-project.eu/). By utilizing polycarbonate urethane (PCU), this implant incorporates a caterpillar track-inspired design to promote the restoration of natural movement to the joint. Surface modifications of PCU have been proposed for the biological fixation of the implant. This study investigated the biocompatibility of PCU alone or in combination with two surface modifications, namely dopamine-carboxymethylcellulose (dCMC) and calcium-phosphate (CaP) coatings. In a rat soft tissue model, native and CaP-coated PCU foils did not increase cellular migration or cytotoxicity at the implant-soft tissue interface after 3 d, showing gene expression of proinflammatory cytokines similar to that in non-implanted sham sites. However, dCMC induced an amplified initial inflammatory response that was characterized by increased chemotaxis and cytotoxicity, as well as pronounced gene activation of proinflammatory macrophages and neoangiogenesis. By 21 d, inflammation subsided in all the groups, allowing for implant encapsulation. In a rat bone model, 6 d and 28 d after release of the periosteum, all implant types were adapted to the bone surface with a surrounding fibrous capsule and no protracted inflammatory response was observed. These findings demonstrated the biocompatibility of native and CaP-coated PCU foils as components of APRICOTⓇ implants. STATEMENT OF SIGNIFICANCE: Hand osteoarthritis treatments require materials that minimize irritation of the delicate finger joints. Differing from existing treatments, the APRICOTⓇ implant leverages polycarbonate urethane (PCU) for minimally invasive joint replacement. This interdisciplinary, preclinical study investigated the biocompatibility of thin polycarbonate urethane (PCU) foils and their surface modifications with calcium-phosphate (CaP) or dopamine-carboxymethylcellulose (dCMC). Cellular and morphological analyses revealed that both native and Ca-P coated PCU elicit transient inflammation, similar to sham sites, and a thin fibrous encapsulation in soft tissues and on bone surfaces. However, dCMC surface modification amplified initial chemotaxis and cytotoxicity, with pronounced activation of proinflammatory and neoangiogenesis genes. Therefore, native and CaP-coated PCU possess sought-for biocompatible properties, crucial for patient safety and performance of APRICOTⓇ implant.


Asunto(s)
Fosfatos de Calcio , Animales , Masculino , Ratas , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Dopamina/metabolismo , Dopamina/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Cemento de Policarboxilato/química , Prótesis Articulares , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/farmacología , Uretano/química
17.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942024

RESUMEN

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Asunto(s)
Agaricales , Genoma Fúngico , Genoma Fúngico/genética , Agaricales/genética , Filogenia , Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Plantas/microbiología , Plantas/genética
18.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575621

RESUMEN

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

19.
Mol Ecol ; 22(21): 5271-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112409

RESUMEN

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hongos/clasificación , Filogenia , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética , Internet
20.
Nature ; 445(7125): 286-90, 2007 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-17206154

RESUMEN

Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda